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FOREWORD

When the author of the present Thesis came to me to do
research, I did not want her to take up any subject in the over-
worked fields of Alamkara, Vedanta or general literature and
wanted to know if she was prepared, to work in fields which
were neglected or in which few young scholars were inclined to
put forth their efforts. On further enquiry I found that she
was qualified in mathematics, having taken her first degree in
physics and mathematics and decided that she should specialise
in the field of Indian contribution to mathematics, algebra and
geometry.

The originality and antiquity of Indian contribution to these
branches of science have been questioned by some of the histor-
ians of mathematics. For example while it is generally believ-
ed that the credit of having discovered the place value and
decimal system goes to India, some distinguished modern writers
do not accept this. But in the case of geometry, we are on more
solid grounds. Not only are the Sulba Siitras earlier in date to
Pythagoras but the entire sacrificial system and the fire altars,
vedis for which the Sulba Sitras were intended, are already pre-
supposed by the Rgvedic hymns.! The biased view of the ancient
Hindu contribution, either for or against, has been aggravated,
as observed by an eminent modern Indian scientist,? by the
inadequate publication of the original documents. Needham
says “future research on the history of science and technology
in Asia, will, in fact, reveal that the achievements of these
peoples contribute far more, in all pre-renaissance periods, to the
development of world science than has yet been realised.”®
This study to be useful could be undertaken only by those who
have scientific equipment, and if these have the additional

1See Macdonell, History of Sanskrit Literature and India’s Past and
Bibhuti Bhushan Datta, the Science of the Sulba..

2See Prof. S. Chandrasekhar, Astronomy in Science and in Human Culture,
J. Nehru Memorial Lecture, 1968, p. 11.

3See Dr. V. Raghavan, Presidential Address, Technical Sciences and Fine
Arts Section. XXIst AIOC, New Delhi 1961.
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grounding of a knowledg: of Sanskrit, the best possible results
could be expected. The material available should be interpret-
ed in terms of modern knowledge in the concerned sciences. It
is in this respect that work such as the one being introduced here
is important,

Dr. Sarasvati has examined ancient Indian geometry as seen
in the Vedic period and its Sulba Siitras and in the texts of the
classical and post-classical periods of Sanskrit literature, as also
in the Jain texts like the Sirya, Candra and Jambidvipa
Prajiiaptis. The work was recommended for the Doctorate
Degree by Judges who were mathematicians and its publication
wiil be an addition to the meagre expositions available on the
scientific aspects of Sanskrit literature.

The efforts of the section of the Ministry of Education dealing
with the history of Science in India and of the Association for
the History of Science and their Journal have been helptul for
the development of researches in this field. Special emphasis wa
laid by the First International Sanskrit Conference held recently
by the Ministry of Education, on Sanskrit and Science and
Technology and it revealed the talent available for tackling sub-
jects in this area. However it cannot be said that, as in the case
of Philosophy, Professors of the different sciences in the
Indian Universities have become interested in this subject;
as [ have pieaded,! the history in India of the respective sciences
should form a regular complementary part of the study of
modern sciences in the Universities and should forin legitimate
subjects for research degrees for Science graduates.

I hope that the author will continue her investigations in this
specialised field and will make further contributions to the eluci-
dation of the Sanskrit literature on mathematics.

Madras V. RAGHAVAN
1. 10. 1972

1Se¢e Dr. V. Raghavan, ‘The Orient & the West’ in Books, Journal of the
National Book League, London, No. 286, July August 19534, pp. 130-2 and
op. cit. Presidential Address to the Section on Technical Sciences and Fine
Arts, Delhi Session of the AIOC.



PREFACE

This book is the third in a series of books on Indian
Mathematics. The first two, History of Hindu Mathematics by

B.B. Datta and A.N. Singh, Part I first published in 1935 and
Part II published in 1938, concern themselves with Arithmetic

and Algebra in Pre-British India. The present book, the author’s
doctoral thesis, has geometry in the India of the same period
as its theme. A similar history of Indian Trigonometry has
been compiled by Dr. R.C. Gupta of the Birla Institute of
Technology as his doctoral thesis under the guidance of the
present author, who has also collected some materials for a
history of series Mathematics in India. She hopes to be able to
present them in a book form before the research world. A
comprehensive history of Indian astronomy is another deside-
ratum to complete the picture of the development of Mathe-
matics in ancient and medieval India.

Indeed the last one should have been the nucleus around
which the other sections are to be grouped. For, at least after
the Sulbasfitra period, the main developments in Indian
mathematics were oriented towards and inspired by the needs of
astronomy. The word, Jyotisa (the science of the luminaries)
covered all branches of mathematics The word ‘ganita’
(valculations) which combined with Pati (calculating board), Bija
(algebraical elements) and Ksetra (ficld or figure), denotes arith-
metic, algebra and geometry respectively has also got an
astronomical colouring, since the root ‘gap’ has always had a
special association with astronomical computations

Geometry, as remarked above, is desighated as Ksetraganita
in most Indian mathematical works. Ksetra mezans a closed
figure whether it be a field or a figure drawn on the calculating
board. In the Sulbasiitras and in the Buddhist works rajju or
rajjuganita (calculations with the cord) stands for geometrical
calculations. It is only very late that we come across the use of
the term Rekhdganita,! calculations connected with the line.

Ksetraganita does not include the calculation of volumes, which
is generally given under a separate heading Khatavyavahira.

1. Jagannatha’s (c. 1718 A.p.) translations of Euclid's Efemerrs is called
Rekhaganita.
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section dealing with excavations. Rdasiganita, calculations
connected with heaps also has some geometrical interest. The
present work is mainly based on the Ksetra and Khdata sections
of available mathematical texts, Rasiganita is rarely made use
of, since these calculations are usually approximations. Most
astronomical calculations being based on geometry, the purely
astronomical texts also will yield geometrical material. But
such material is not included in this study. Insome of the texts
like the Ganitasarasamgraha, Mahasiddhanta and the Ganitakau-
mudi rules or formulae are given for computing the areas of
figures which are not basic geometric figures, but which can be
cut up into -basic geometric figures like the segment and the
triangle. Examples are the figures called Yava (barley corn),
muraja (a sort of drum)and Sankha (conch shell). These are
also omitted in this study unless they have some special geome-
trical interest.

The completion of this work as planned is primarily due to
the help and encouragement received from my guide,
Dr. V. Raghavan, Professor of Sanskrit (since retired), Madras
University. I am extremely grateful for his guidance and for
gracing this book with his valuable Foreword. I also acknowledge
with grateful thanks the help given to me by Prof. T.S. Kuppanna
Sastrigal, retired Professor of Sanskrit, Sanskrit College, Madras,
Dr. K.Kunchunni Raja, Professor of Sanskrit, Madras Univer-
sity, Prof. C.T. Rajagopal, retired Director, Ramanujam Insti-
tute, Madras, Sri Rama Verma (Maru) Tampuran (Joint editor
of the Yuktibhasd), Dr. K.V. Sharma, (now) Reader in Sanskrit,
Punjab University, in procuring books and manuscripts and in
unravelling the meaning of obscure mathematical passages, and
the help of my friends and colleagues Smt. C. P. Parvati, Smt.
Helen Barnard and Sri K. R. Prabhakar in correcting the
typescript and in typing and proof-reading.

I thank the Government of India for granting me a Humanities
Research Scholarship and for sanctioning 509/ of the publica-
tion cost, though I could not make use of the promised help in
time and so forfeited it. I am grateful to the Ranchi University
for subsidising this publication in part and to Motilal Banarsi-
dass, Publishers and Book-sellers, for bringing out this work,
which, by its very nature, has scant commercial value.
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CHAPTER ]
INTRODUCTIOIN

The mathematical genius of the ancient Indians was mainly
computational and led to spectacular achievements in arithmetic
and algebra. But.the basis and inspiration for the whole of
Indian mathematics is geometry. The beginnings of algebra
are to be traced to the constructional geometry of the Vedic
priests preserved in the Sulbasiitras. In later periods also algebra
must have leaned on geometry. For, down the ages, Indian
mathematicians have shown a predilection for demonstrating
algebraical truths geometrically (see Ch. IX). So too the
arithmetical operations, multiplication and division were demon-
strated geometrically, Trigonometry is, as its name proclaims,
the geometry of the triangle. Indian trigonometry which employ-
ed sine and cosine chords instead of the ratios has always
retained its geometrical character. The study of the Theory
of Numbers was really the study of the right triangle and rational
rectilinear figures.

The branch of mathematics which received the earliest
attention was also geometry. The Sulbasiitras (5th to 8th century
B.C.) is a manual of geometrical constructions. A geometrical
knowledge of this level could not have come into existence over-
night. The absence of earlier records has led many scholars to
posit large-scale indebtedness to foreign countries, chiefly Baby-
lonia.! This is not warranted, though exchange of ideas could
have and must have occurred. Even the scant remnants of
the Indus Valley Civilisation excavated at Harappa and
Mohenjo-daro reveal some acquaintance with geometry. In
the words of E. J. H. Mackay, “It is surprising to find that an
instrument was actually used for this purpose (i.e. for drawing
circles) in the Indus Valley as early as 2500 B.c.”’? Hence it
seems more probable that Indian geometry developed gradually

IM. Cantor, V¢;i.'lesuugen Uber Geschichte der Mathematik, 4th Edition,
Vol. 1. p. 645.
2E.J.H. Mackay, Further Excavations at Mohenjo-daro, 1938, p. 222.
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into the Swlbasiitra stage with the intervening links buried in
the sands of time. (India’s sands were never so kind to her
records as Babylonia’s sands have been to her clay tablets.)
Even the Sulbasiitras may have preserved only a part of the mathe-
matical knowledge of those days, the part that was necessary
for constructing the sacrificial aitars and for computing the
calendar to regulate the performance of sacrifices.

With the sacrificial cult of the later Vedic period waning in
influence and the rising ascendency of the cosmography
of the Jainas and the astronomy of the Hindus, geometry
becomes circle-oriented, so that Indian geometry after the
dawn of the Christian era can pertinently be termed chord-
geometry. It was studied for the sake of astronomy and along
with the rest of mathematics, forms part of astronomical trea-
tises. But this does not mean there was a break in continuity.
The Sulbasiitra theorem of the square of the diagonal continued
as the chief tool in the hands of the astronomer-geometer. The
circle-centred nature of Indian geometry was not fully appreciat-
ed by some of the Indian mathema:icians themselves, the
most notable amongst such being Aryabhata II (10th cent.)
and Bhaskara II (12th cent.) who were at a loss to understand
Brahmagupta’s (7th cent.) expressions for the area and dia-
gonals of a cyclic quadrilateral. The amount of geometrical
knowledge (as also the knowledge of complicated mathemati-
cal series) which went into the derivation of the easy-to-handle
rules of computation found in astronomica! manuals is also
hardly appreciated by the practising astronomer and astrologer.
The continuity of the tradition of geometrical knowledge is
testified to by the achievements of the Aryabhata school, who
not only understand the significance and limitations of Brahma-
gupta’s theorems about quadrilaterals but also give complete
proofs of these.

A more serious charge against Indian mathematics in general
and geometry in particular is the absence of proofs and
demonstrations, so beloved of the Greeks. Yoked as geometry
was to practical and astronomical needs, it has remained largely
mensurational. In the Indian mathematical texts there is no
attempt at any proof or derivation and the earlier commentaries
too do not improve the situation much. But luckily there are
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some commentaries and an independent work meant to be an
aid to the understanding of an astronomical text which preserve
many elaborate proofs and derivations of complicated mathe-
matical series etc. This shows Indian mathematicians too
were not satisfied unless they could prove or derive the results
they used. It is also significant that these proofs and deriva-
tions are found in commentaries, not in the standard mathe-
matical or astronomical treatises, which satisfy themselves with
the enunciation of the results. As in dyurveda, the great teachers
were content to provide manuals for easy reference in writing
while the explanation and the rationale were left to oral instruc-
tion. In fact the break in the oral tradition brought about by
foreign invasions may have resulted in significant links in our
scientific knowledge being irretrievably lost.

But one has to concede that there was an important differ-
ence between the Indian proofs and their Greek counterparts.
The Indian’s aim was not to build up an edifice of
geometry on a few self-evident axioms, but to convince the
intelligent student of the validity of the theorem, so that visual
demonstration was quite an accepted form of proof.

This leads us to another characteristic of Indian mathe-
matics which makes it differ profoundly from Greek mathe-
matics. Knowledge for its own sake did not appeal to the
Indian mind. Every discipline (S@stra) must have a purpose.
And since self-realisation and the resulting deliverance from
birth and death was the most legitimate purpose of life, those
sciences which were supposed to further this purpose directly
or indirectly were most assiduously pursued. Thus astronomy
was cultivated as an adjunct to the study of the Vedas and the
performance of sacrifices with the rest of mathematics as an
appendage to it. Hence the paucity of treatis:s devoted wholly
to mathematics. The Bakhshali manuscript, the Patiganita and
Trisatika of Sridhara and the Ganitasara-samgraha of Mahavira
are the only early works dealing exclusively with mathematics.

Other important developments in Indian mathematics are
also the outcome of religious needs. Theearly geometry of the
Sulbasiitras grew out of the requirements of altar-construction,
mathematical series out of Jaina cosmography and later out
of the need for improved methods of astronomical culculations,



4 Geometry in Ancient and Medieval India

trigonometry and the geometry of cyclic figures out of
the calculations in the celestial circle. Indeterminate analysis,
for which the Indians are justly famous, is again intimately
connected with astronomical calculations.

Outside this Treligio-astronomical sphere only the problems
of day-to-day life interested the Indian mathematicians. Such
were the problems of mensuration, paying for digging and
sawing (khdta and krakaca), barter (bhandapratibhinda), Rule of
Three (trairdsika) etc.

The study of permutations and combinations was inspired
by literary criticism (the prosody part of it), a necessary
accomplishment of a man of refined tastes. Mixing of ingre-
dients in medicines, idol-making and Jaina religious specula-
tions also contributed to the study.

This leaning towards utilitarianism has had unfortunate
results. The nonchalance with which the splendid achieve-
ments of Greek geometry were ignored, while the pseudo-science
of Greek and Babylonian astrology .was received with open
hands, is perhaps the worst of these. It was only in the 18th
century, nearly 2000 years after the active contact of the
Indians with the Greeks, that Euclid’s Elements were translated
into Sanskrit! and even then perhaps the example of the Arabs
provided the inspiration.

General Survey of the history of Geometry and
Mathematics in India

In the history of Indian geometry three distinct periods can
be discerned :

(1) the pre-Aryan period, the remains of whose civilization
have been dug up in Harappa, Mohenjo-daro and other places
in the Indus Valley.

(2) The Vedic or Sulbasiitra period, and

(3) The post-Christian period.

The first of these, the period of th: Indus Valley civilization,
is the oldest period in which we can find traces of a civilization
in India though eminent scholars like B. G. Tilak and
Jacobi would assign a greater antiquity to the civilization of

1The translator was Jagannatha, attached to the court of the famous
astronomer king, Jayasirhha.
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the Vedic Aryans. The lower limit of this civilization cannot
be later than 2500 B.c. The most noteworthy feature of
this civilization is well-planned towns for which some know-
ledge of geometry is indispensable. We also have other
evidence of the geometrical sense of this ancient people.! A
favourite pattern on pottery excavated at Mohenjo-daro is a
series of intersecting circles apparently made by drawing a series
of vertical lines to divide the surface of the jar into a number
of nearly equal panels and then scratching circles with a pair
of dividers. Other patterns are the square, the circle, two
triangles joined at their apexes, two or four hemispheres with
their curved edges towards the middle of the pattern, a series
of linked triangles with hemispheres filling up the space and a
rectangle with the four sides incurved. “The last of these is a
frequently found motif which I have already compared to
stretched hide.” The motif of the inverted triangles is also
fairly common.

We do not yet know what the exact relationship between
this city-civilization and the Vedic civilization was. We have
to aitach some significance to the fact that the commonest
motif on the pottery of this period, namely that of the rectangle
with incurved sides resembling a stretched hide, is preserved
in the shape of the sacrificial altars of the next Vedic period.
The most important altar (vedi) of Vedic sacrifices, the Maha-
vedi is of this shape, while its corners are called Sronis (hips)
and amsas (shoulders). This points to a close connection bet-
ween the geometrical knowledge of the two periods, since the
geometry of the Vedic period, as far as we know, existed for
the sake of sacrificial altars.

When the poetic vision of the Vedic™ seers was externalised
in symbols, the ritual sacrifice with all its elaborate details
came to occupy a pivotal place in their religion. Exact measure-
ments and different geometrical shapes were prescribed for the
altars (vedi) and fire-places (agni) to be used in the sacrifices
performed for different purposes. To meet these demands the
science of geometry grew up and was codified in the Sulbasiitras.
But since the sacrificial lore is as old as the Vedas or even
older (according to Oldenberg) the geometrical knowledge

YFurther Excarations at Mohenjo-daro, pp. 221-25.
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necessary for the construction of the altars and the fire-places
must be equally old. The Vedas themselves, as prayers addressed
to particular deities, are unlikely to show any traces of
geometrical knowledge. Yet we find in them words like trirasri
and caturasri (Rg Veda \, 2}, 152, 2), dasabhuji (Ibid. 1, 10,
52, 11) and tribhuja (Atharva Veda V111, 5, 9, 2,). Though-these
are of doubtful geometrical significance their presence in purely
literary works may be an indication of the popularity of geome-
try in those days.

The Taittiriya Samhita of the Yajur Veda, the Veda of the
petforming priest, which gives the measuremants of the Mahadvedi
as 36 as altitude and 30, 24 as parallel sides so that half of 30
and 36 make the sides about the right angle of the Pythagorean
triangle 36, 15, 39, must, according to A. Biirk,! have been
acquainted with the theorem connecting the squares of the
sides of a right triangle. The Brahmanas of the Yajur Veda
contain sporadic accounts of the construction of the vedis and
agnis — the sacrificial altars and fire altars (S‘atapatha Brahmana
II. 5. 1 & X. 2. 1. 1-3). Finally, along with the codification
of the various disciplines for the correct understanding of the
Vedas and the performance of the sacrifices, the geomaztrical
knowledge required for the construction of the altars was put
together in the Sulbasiitras, which form supplements to the Kalpa-
siitras or are incorporated in them. The Sulbasiitras cannot be
later than the Sth century B.c. and may be as old as the 8th or
9th century B.c. The enunciation in general terms of the
theorem of the square of the diagonal and its application to
various problems is the most important achievement of this
period.

More or less overlapping this period of the siitras and Brahm-
anas we find a voluminous Jaina literature which contains a
considerable amount of mathematical information. If the
correct orientation and measurements of the sacrifical vedis
were important to the adherents of the Vedic religion, correct
calculations in their cosmography were equally important to
the Jainas. To them ganita (calculations or more broadly mathe-
matics) was one of the four anuyogas, adjuncts to religious in-
struction, just as jyotisaor astronomy was one of the accessories

“17.D.M.G.. 1901, pp. 553-55.
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to Vedic study. Hence we find mensuration formulae connected
with circles, segments, trapezia and trapezoidal solids and rules
connected with mathematical series, permutations and com-
binations scattered through Jaina canonical works, while works
like the Saryaprajiapti and Candraprajfiapti deal exclusively with
astronomy as understood by the Jainas. Series mathematics
especially seems to have got a great impetus from their cosmo-
graphical enquiries. So also the mensurational bent of Indian
geometry may be a heritage from them.

The early Jaina works with scattered mathematical material
in them are the Tartvarthadhigamasiitra more especially its com-
mentary by Uméasvamin or Umasvati, the Sthanargasiitra, the
Jambudvipaprajiiapti, Anujogadvdrasiitra; the Ksetrasamdsas etc.
As a matter of fact almost all Jaina works, canonical or other-
wise, tend to have something of mathematics in them. For the
Jainas loved to calculate everything elaborately and precisely,
however fantastic their original premises were. But trying to assign
dates to these various works is almost a hopeless task. The Siarya-
prajfiapti, which as Thibaut shows,! has close affinities with
the Vedanga Jyotisa, could not have been much removed from
them in time. Moreover Bhadrabahu, who is said to have
written a commentary (niryukti) on the Suryaprajiapti, lived
162 years after Mahavira i.e. in the 4th century B.c.2 And the
Stiryaprajiiapti is but an Updnga (a minor anga). The angas like
the Acarangasitras are likely to be much earlier. Umasvamin,
commentator of the Tartvarthadhigamasiitra and author of the
Jambudvipasamasa, lived in the second century B.c. according
to the Svetambara tradition and in the 2nd or 3rd century A.D.
according to the Digambara tradition. Hence we can safely
assume that most of these works belong to the centuries before
Christ and some may be quite old, since, according to Jaina
tradition, Mahédvira (5th century B.c.) is the last of the
Tirthamkaras and Bhadrabiahu the last of the Srurakevalins
(those who knew all the 12 angas). The Karapagathas from

1J.4.5.B. 1880, pp. 107-127 and 181-206.

2Jaina School of Mathematics. Bull. Cal. Marh. Soc. XXI-1929. Sec
also Weber, Sacred Literature of the Jains, Ind. Ant. XXI p. 14
onwards,..for the antiquity of the Saryaprajiapti.
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which later authors and commentators quote anonymously also
appear to be very old.

Few extant works of any mathematical interest belong to
the opening centuries of the Christian era. The Siryasiddhanta
and the siddhdntas summarised in Varahamihira’s Paficasiddhan-
tikd must have been composed during this period. And these
astronomical treatises, unlike the Veddnga Joytisa, presuppose a
considerable amount of mathematical knowledge. It is not
improbable that treatises exclusively devoted to mathematics
were also composed during this period. The Bakhshali manu-
script (2nd or 3rd century a.p.)! may be a representative
remnant of such works. Even this manuscript is not of much
belp in reconstructing the history of Indian geometry, since
the geometrical portions it must certainly have contained, have
been entirely destroyed.

With the fifth century after Christ we reach surer ground.
Aryabhata 1 (born 475 a.p.) dominated the Indian mathe-
matical world as Plato did the Greek philosophical world,
though the extant text of the Aryabhative does reveal some in-
accuracies. But the terse language in which it clothes its rules
and formulae bespeaks a long tradition of mathematical
studies, making it difficult to ascertain what exactly Aryabhata’s
actual contribution to mathematics is. It is equally difficult
to gauge his influence on later mathematicians. Bhaskara 1
(¢.522 A.p.) and Lalla? were his followers. Brahmagupta
seems to attack him mercilessly in his Brahmasphutasiddhanta
but to be compelled to bow to his superior popularity in his
Khandakhddyakarana. The whole host of astronomers which
Kerala has produced recognises him as their dcarya (master)®.

1The Bakhshali Mathematics by B.B. Datta, Bull. Cal. Math. Soc. XXI,
1929 and The Bakhshali Manuscript by A.F. Rudolf Hoernle, Ind. Ant.
XVII, 1888 p. 33ff. for a discussion of the date. This early date is stilla
disputed point.

2Lalla’s date is uncertain. Pt. Sudhiakara Dvivedi assigns him to 499 a.p.
and S.B. Dixit to ¢.738 a.p. on rather nsufficient grounds. K. Balaganga-
dharan in his “A consolidated list of Hindu mathematical works’” published
in the Mathematics Student, XV, 1947, pp. 55-09, assigns ¢. 748 to him.
3The author of the Kriyakramakari, a commentary on the Lilavari, refers to
Aryabhata not to Bhaskara as *‘Acirya’.
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Many of these like Madhava of Samgamagrama, Parame$vara
of Drgganita fame and Nilakantha are astronomers and mathe-
maticians of no mean ability, though to them pointing out
mistakes in the master is obviously a sacrilege.

The Aryabhata School of mathematics seems to have had
some connection and sympathy with Jaina mathematics.
Bhaskara I quotes three Prakit verses in his commentary on
the Aryabhatiya.l A second piece of evidence is the large
number of the manuscripts of the Jaina Mahaviracarya’s
Ganita-sara-samigraha found in Kerala. If this hypothesis is
correct, the Aryabhata School may be said to have maintained
a continuity of mathematical tradition with the Vedic period
and the bloom of mathematics in India with Aryabhata ceases
to be sudden.

Brahmagupta (628 a.p.) though well-acquainted with
Aryabhata’s mathematics and astronomy, seems, as already
pointed out, to have parted company ‘with the school. His
geometry contains some remarkable new theorems about the
cyclic quadrilateral. But it is significant that the elucidation
and proof of these theorems were undertaken by the Aryabhata
School, while Bhaskara H, who closely followed Brahmagupta
failed to do so.?

Bhaskara I has to be dated between 550 and 628 a.p.,
round about 574 a.p.,? since Prthitdakasvamin makes Brahma-
gupta later than Bhaskara. In the Aryabhata School Bhaskara’s
astronomical works (which are really expositions of the Adrya-
bhatiya) — the Mahabhaskariya and the Laghubhdskariya— are
very popular, asis shown by the large number of comment-
aries on them. But his commentary on the Aryabhatiya is more
interesting to the student of Indian mathematics; for this is the
first work in which we come across the geometrical treatment
of algebraical formulae which the mathematicians of the
Aryabhata School often resorted to. Even series were subjected
to this treatment with remarkable success. The only other

1Aryabha,tz‘yab_hli,u‘a. 12806. B. Triv. Uni. Mss. Lib. pp. 5, 10. Also quoted
by B.B. Datta in his ‘A lost Jaina treatise on Arithmetic”, Jaina Siddhinta
Bhaskara, Bhaga 3, Kirana 2.

2Vide the chapter on quadrilaterals.

3Vide Kuppanna Sastrigal’s introduction to his edition of th: Aaha-
bhaskariya {Govt., Oriental Mss. Lib. publication. Madras 1957).
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mathematicians to treat series diagrammatically were Sridhara
and Nardyana Pandita, whose method and object differed
from those of the Aryabhata School. The diagrammatical
treatment of one particular type of algebraic equation, viz.
ax-+-by+c=xy (known as bhdvitd in Sanskrit) is met with in
Bhaskara Il also.!

Between Brahmagupta and Bhaskara II we get four trea-
tises devoted to mathematics — the Patiganita and Trisatika of
Sridhara, the Ganitasarasomgraha of Mahdavira and the
Ganitatilaka of Sripati. The Jaina Mahavira, whose work is
characteristically elaborate, lived in the reign of the Rastra-
kiita king Amoghavarsa Nrpatunga who ruled between 814 or
815 and 877 or 878 a.p.2 Sridhara is probably earlier than
Mahavira though K. S. Shukla places him between 850 and
950 a.p. Sripati, who also wrote the Siddhantasekhara
and other astronomical and astrological treatises, flourished
in the 11th century. His Ganitatilaka omits geometry and
algebra altogether. To the 10th century belongs Aryabhata I1
whose astronomical reatise is the Mahdsiddhanta. More or less
complete lack of understanding of Brahmagupta’s theorems
about the cyclic quadrilateral, more and more correct approxi-
mate formulae for the volume of a sphere, and various appro-
ximate formulae for the arc and area of a segment mark these
works.?

A few Jaina semi-religious works, the Tiloyapannatti (Triloka-
prajfiapti)  of Yativrsabhacarya and the Trilokasara and
Gommatasira of Nemicandra (c. 980 a.p.) belong to this period.
Of these the Tiloyapanparti is perhaps a later redaction of a
much earlier work.

Bhaskara II (b. 1114 a.p.), wrongly considered the last
great mathematician that India has produced, has many
original contributions to make, especially in the field of
algebra and trigonometry. The accurate formulas for the volume
and surface area of a sphere and a close approximation for

1Bhaskariva Bijaganitam, Anandisrama Granthavali, 99, pp. 195-202.

2Ganitasarasamgraha ed. by Rangacharya, p. IX.

3The Vatesvarasiddhanta, whose first volume has been published from Delhi,
ought to contain a section on mathematics. But this section has not appeared

in print.
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the length of an arc in terms of its chord and vice versa are
some of his achievements in geometry.

The last of these is a modification of the formula:

.. Rp(180—0) . . O hi
R sin 8- T{40500—4 (180—6)} given by Bhaskara 1 in his
Mahabhaskariya.

Narayana Pandita, son of Nrsimha and author of the Ganita-
kaumudi (1356 A.p.) is sometimes confused with Narayana,
commentator of the Lilgvati. The Gapitakaumudi gives the
impression of being a full and detailed treatment of the
mathematical knowledge of Nardyana’s age. A few of his theorems
—three and only three diagonals are possible for a cyclic
quadrilateral with given sides, the area of a cyclic quadrilateral is
the product of the 3 diagonals divided by twice the diameter—
are not met with in earlier works.! In his treatment of cyclic
quadrilaterals, Narayana has some affinity with the Aryabhata
School. But his S§redhiksetras (diagrams of series) do not bear
the stamp of that school, nor does he seem to be familiar with
the very close approximations to the value of = which the school
had arrived at probably by about the same time.

Samgamagrama Madhava, Parame$vara, Nilakantha, Putu-
mana Somayajin and the author of the Kriyakramakari, an elabo-
rate commentary on Bhaskara’s Lilavari and the author of the
Yuktibhasa which purports to be an exposition in Malayalam
of Nilakantha’s Tantrasamgraha — all these belong to a period
of intensive astronomical studies in Kerala from the 14th to
17th centuries A.D.

A method of integration based on subtle geometrical analy-
sis and ingenious methods of summing up series, used to get
infinite series for m, sin §, cos § and the arc, is the most
important achievement of this period. This method was also
successfully employed for finding the volume and surface area
of a sphere. Strictly geometrical proofs for Brahmagupta’s
theorems, trigonometrical identities, etc. are also found in the
works of this period.

iCaturveda Prthadaksvamin, the commentator of Brahmagupta (who lived
in the 10th century A.p.), is said to have proved Ptolemy’s theorem.
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From the references scattered through the works of others,
one gathers that the remarkable developments in the geometry
of the circle found in this period are the achievements of
Madhava, though his extant works, the Vepvaroha and the Candra-
vakyani, do not mention these developments. Madhava lived
in the latter half of the 14th century.! Paramesvara who is
said to have spent 85 years observing the sky and then correct-
ed the astronomical elements to tally with his observations
in 1430 A.p., has a number of astronomical works to his credit.
But unlike the Kriyakramakari, his commentaries on the Arya-
bhatiya and the Lildvati do not introduce much new mathe-
matical material. Nilakantha’s (1443-1545 a.p.) commentary
on the Aryabhatiya is much more elaborate and mathematically
interesting. His Tantrasamgraha also, though mainly astrono-
mical, contains all the new developments in mathematics.?

Putumana Somayajin's Karanapaddhati of uncertain date
(but probably of the early 18th century) seems to be of the
nature of a compendium. On the other hand the Yuktibha,a,
as the only work which gives the rationale and poof or deriv-
ation of all the theorems and formulae thenin use among the
astronomers of Kerala, is a unique work. The author of the
work is, according to K.V. Sharma,? Jyesthadeva, who lived
between a.p. 1475 and 1575. And from the manner of his
writing he is no innovator in the line of demonstration, deriva-
tion and proof. In fact, his remarkable expositions recur in
the Kriyakrainakari* (in part) and in a Sanskrit commentary on
the Tantrasamgraha preserved in the Sanskrit College Library

{K.V. Sharma’s introduction in the Vepvaroha ed. by K. Achuta Poduval,
Sri Ravi Varma Sanskrit Series. No. 7, pp. 7-8.

The text of the Tantrasamgraha published from the Triv. Mss. Lib. does
pot contain these mathematical portions, which are found in another
manuscript of the Tanfrasamgraha with a Malayalam commentary, a tran-
script of which Sri Rama Varma Maru Thampuran kindly lent to me and a
Tantrasamgrahavyakhyd in Sanskrit in the Tripptinithura Skt. College
library No. 275 (572).

3Jyesthadeva and his identification as the author of the Yuktibhasd by
K.V. Sharma, Advar Library Bulletin Vol, XXII, pp. 35-40.

4in the Kerala Sahitya Caritra the Krivakramakari is given as an alterna-

tive name for Narayana’s Karmapradipika, another commentary on the
Lildvati. But the two commentaries are not the same. The Kriyakramakari is
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at Trippunithura.! The author of the former is probably
Sankara Variyar (1556 a.p.), a pupil and commentator of
Nilakantha. Hence it is not unreasonable to believe that these
proofs were known in the Aryabhata School at least from the
time of Madhava, if not earlier.

The Sadratnamali, a later work composed by Sankara-
varman, contains all these results without the proofs. No new
ground was explored after this, chiefly because the needs of
astrological astronomy were already satisfied. Secondly, the
contact with the West, which, with the brute force of fire-arms
overpowered the superior skill and artistic perfection of the
military techniques of the native warriors, had a powerful
degrading effect on all indigenous arts and studies.

full and elaborate, the Karmaprodipika seems to be indebted to Parame$vara’s
commentary on the Lilavati.

ITranscript No. 275 (572). This is of unknown authorship. But at the
end of every chapter there occurs the verse:

£A TCRS AN gTaaHifar aisd: |
T IR qEAT AT Foa: )
(with the chapter number before the word adhyaiva).
The commentator has derived his knowledge from a Brahmin of Parakroda,

who may be Jyesthadeva of Paraiifiot (Sanskrit—Parakroda) family, who is
the author of the Yuktibhasa.
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SULBASUTRA GEOMETRY

2.1. As much of the geometry of the Vedic period as is
required for the construction of the altars (vedi) and fire-
places (agni) prescribed for the obligatory (nirya) and votive
(kamya, performed to attain specific ends) rites, is contained
in the Sulbasitras. These form part of the vast literature,
designated as Kalpasitras, attached to the Vedas as one of the
six V dasgas (limbs of the Veda). Louis Renou lists 8 Sulba-
siitras,! Laugaksi, Manava, Vardha, Baudhayana, Véidhila, Apas-
tamba, Hiraitvakesin and Katyayana. With the Maitréyana men-
tioned by Datta? the number reaches nine. Those of
Baudhiyana, Apastamba, Katyiyana and Manu form separate
treatises; the rest are chapters or parts of chapters of the
corresponding Srautasiitras. All these belong to the Yajur Veda,
the Katyayana to the Sukla and the rest to the Krsna Yajur Veda.
Since all these Sulbas are attached to Srawtasitras B.B.
Datta surmises that there must have been many Sulbasiitras
attached to each of the 1131 or 1137 Vedic Sakhas with their
own Srautasutras® But it seems more likely that the Sulba-
siitra sections were confined to the Srautasitras of the Yajur Veda,
the Veda specially designed for the performance of the sacrifice.

2.2. The Date of the Sulbasitras

Obviously the geometry of the Sulbasitra has developed
with the demands of the construction of the sacrificial vedis,
and therefore it must be very old. According to Oldenberg,
the three most primitive, agnis, the Girhapatya, Ahavaniya and
Daksindgni are older than the Rg Veda.t There is a likelihood
of the Mahavedi being known to the Indians of the Indus Valley

YWedic India by Louis Renou, translated from the French by Philip Spratt.
Susil Gupta (India) Private Limited, Calcutta 12. 1957. pp. 43 and 51.
2B.B. Datta, The Scicnce of the Sulba, p. 2.

3{pid, p. 1 and foot-note 2 on the same page.

AS5.B.E. XXX, p. IX. Also the Rg Veda refers to fire as trisadhasthe
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Civilization even.! M. Cantor and A. Biirk recognise as
incontrovertible the fact that the Pythagorean theorem was
known in India at the latest in the 8th century B.c.?2 The
Kamyagnis prauga (triangle), ubhayatahprauga (rhombus), ratha-
cakra (wheel), dropa (trough) and smasdna (cemetery) find
mention in the Taittiriyasamhita.® The praci (the exact east-
west line) and the exact measurements of the Saumikivedi are
also mentioned in the same samhita. The Satapatha Brahmana
gives detailed instructions for the construction of the most
complicated agni, the Vakra-paksa-vyasta-puccha-syena (the falcon
with curved wings and spread tail). All this shows that the
construction of the sacrificial altars with all due precision was
.a common practice during the Brahmana and even the Samhita
periods.

We do not know when exactly the codification of the
rules for the construction of the vedis began, nor do the exist-
ing Sulbasiitras lend themselves to exact dating. A.B. Keith
places the Apastamba Srautasiitra in the 4th century B.c. and
the Baudhdyana Srautasitra in the 5th century B.c. Biihler
would have the Apastamba Srautasitra 150-200 years earlier
than Papini. A. Biirk accepts Biihler’s view. The language
.of the sitras alone can give us some clue to their age, and the
most we can say from their language is that they are pre-
Paninian. Keeping in view the dates assigned to Panini by later
researchers,. one feels ¢. 800 B.c. is a more probable date for the
.codification of the Sulbasiitras.

2.3. The term Sulba

The word sulba does not occur anywhere in the body of the
Sulbasiitras except in the metrical supplement of the Katydyana
Sulbasiitra. The word is supposed to have been derived from

(remaining in three places), (RV.1.67-5), Also gagg €IT: T IF:
refers to expert measurements of the fire place (Viae Z.D.M.G. 1901). ®

Vide Ch. I, p. 4 above.

2Vorlesungen uber Geschichie der Mathematrik, Vol. I, 4th Edn. p. 636 and
Z.D.M.G. 1901, pp. 553-55.

3A Burk in the introduction to his edition of the dp. $/. Sa. brings up all
these references (Z.D.M.G. 1901, p. 548).
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the root sulb or sulv to measure, when Sulba will mean a
measuring tape or cord. But the sifras themselves use the
word rajju not Sulba in this sense. The Katyayana Sulbasitra
opens with <ssawrd  asam.. (We will expound the mani-
pulation with cords). Later writers too never use the word
Sulba except in the sense of the Sulbasiitras.

2.4. Analysis of the contents

The geometry of the Sulbasiitras is primarily constructive,
though they occasionally notice and formulate some of the
geometrical truths involved. The altars and fire-places had
different shapes, all geometrical (even the vakrapaksavyastapuccha
is not ungeometrical). The orientation, shapes and areas of
these had to be strictly correct, this correctness being as import-
ant as the correct pronunciation of the Vedic manrras. Hence
accurate geometrical methods of construction were evolved.
Most often the geometrical truths underlying these construc-
tions were left unenunciated. Hence the geometrical contents
of the Sulbasiitras can be broadly divided into three categories—
(1) theorems expressly stated, (2) constructions, and (3) the
geometrical truths implied in these constructions but not
stated as such.

2.5. The Theorem of the square of the diagonal

To the first category belongs the theorem popularly associated
with the name of Pythagoras (c. 540 B.2,) connecting the
square on the hypotenuse or diagonal of a rectangular triangle
with the sum of the squares on the sides containing the
right angle. Perhaps the first statement of this theorem in its
most general geometrical form is ancient India’s most import-
ant contribution to the development of mathematics. It is
true that most ancient peoples knew and used the right
triangle 3, 4, 5! for getting a right angle and the Babylonian
records contain a list of Pythagorean numbers.2 But the full

1The Chinese Nine Sections (c. 1100 B.c.) mentions this triangle and the
Kahun Papyrus of Egypt (¢. 2000 B.c.) refers to four sets of numbers form-
ing right triangles (D.E. Smith. History of Mathematics, Vol. I, p. 293).
20. Neugebauer, The Exact Sciences of Antiguity, p: 35.



Sulbasitra Geometry 17

geometrical significance of the theorem, that thesides of any right-
angled traingle will exhibit this relationship amongst them, was
perhaps first realised by the altar-building Vedic priests. The
German mathematicians A. Biirk and M. Cantor discuss the
question in detail and come to the conclusion that the theorem
was known in India at the latest by the 8th century B.C. i.e. the
date of the oldest Sulbasutra that, of Baudhayana. The samhitas of
the Black Yajur Vedaand the Satapatha Brahmana give 36 units
as the length of the praci (east-westline) or prsthya (the line of
symmetry) of the Mahdvediand 30 units as one of the north-south
sides, the praci and half the side thus making the sides containing
the right angle in a rational right angled triangle, viz. 36, 15, 39.
In the Satapatha Brihmana (X. 2.3.7) mention is found of increas-
ing the size of the Vedi fourteen-fold to accommodate the
Ekasatavidhagni (the fire-place for the 101st performance of the
sacrifice) for which operation a knowledge of the theorem of the
square of the diagonal is indispensable.! Hence it is highly pro-
bable that the theorem of the square of the hypotenuse was
known in India much earlier than the Sulbasitra period. Tenta-
tive evidence for a very much earlier date even can be brought
forward, if the term #risadhastha (residing in three abodes) as
applied to the fire, has reference to the three agnis, G.irhapatya,
Ahavaniva and Daksina, because the construction of the Daksin-
agni requires a knowledge of this theorem. Though the Sulba-
siitras themselves speak only about the orientation of the 3 fires,
the commentators supply the mode of construction, which in-
volves drawing a square with the dvikaran? of a pisila® as the
side.?

1A .B. Keith (J.R.4.S. 1910 pp. 519-21) maintains that the mention of the
numbers 36 and 15 as representing the sides about a right angle is no evid-
ence of the knowledge of the theorem of the square of the hypotenuse on
the part of the Indians of the Samhita period. The evidence of the .‘7atapatlm
Bralmana passages enjoining the increment of the vedis or altars for each
subsequent construction by one purusa, is also dismissed with the remark
that the increment is most probably in the side not the arca. But this is
disregarding the tradition preserved in all the Sulbasarras.

2The pisila is a unit of length defined variously as the arm with folded palins
or the length of the two arms extended.

3See Kapardin's and Karavinda’s comments on p. §/. 1. 4,
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The Sulbasatras exhibit a thorough familiarity with the proper-
ties of the right triangle, or rather the properties of the sides and
diagonals of figures with right-angular corners. Many rational
right triangles are mentioned like :

15, 36,39 (dp. SI. V. 2; B.SI 1.49)
3, 4, 5 (Ap. SI. V. 3; B.SL 1.49)
and the latter multiplied by 4 and 5
5 12, 13 .
T 35 37 } (dp. SI. V. 4; B. SI. 1. 49)
7, 24, 25 (B. SI. 1. 49)
72, 96, 120 }
40, 96, 104 ;
2,6, 63 [ (M. Sl
7%, 10, 12}
Besides these the irrational right triangle 1, 1,472 and the appro-
ximate right triangles?
" 36, 90, 97
40, 40, 56
5, 6, 73

and 4, 4, 5%
are used in the Sw/basiitras for constructing right angles. Secondly
the fact that the square on the diagonal (aksnayarajju) of rect-
angles and squares combines the squares on the two sides is used
to find geometrically the side of a square of any given area, whether
the number representing the area is a perfect square or not; i.e.
to evaluate square roots and surds geometrically and for combin-
ing and subtracting squares to yield squares again.

The actual enunciation of the theorem in the Sulbasiitras is
not with respect to the right triangle but with respect to the sides
and diagonals of squares and rectangles.

Ardeqenaress: arwEwTd fads A, 9 aq quy geasagwd w0t

(dp. SL 1. 4)
{The diagonal cord of a rectangle makes both (the squares)
that the vertical side and the horizontal side make separately)
and

1As quoted by Datta in the “Science of the Sulba, p. 123.

2Vide The Mdnava Sulbasitram by N.K. Mazumdar. Jour. Dep. Let. Cal.
VIIIL. 1922.
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SgTEEnETETE fgEarEdt wft wafa | (dp. SL. 1. 4)
(The diagonal cord of a square makes double the area).
The two parts in the enunciation perhaps indicate two steps in
the discovery of the theorem.

Many have speculated on the possible mode of discovery of
this theorem. Amongst them the most noteworthy are Thibaut,
Birk and Datta. Thibaut-thinks that the Indians must have
been ““observant of the fact that the square on the diagonal is
divided by its diagonals into four triangles each of which is
equal to half the first square. This is at the same time an im-
mediately convincing proof of the Pythagorean proposition as
far as squares or equilateral rectangular triangles are concerned”

N (J.4.5.B., 1875, p., 234).t That is,
/ the diagram which suggested the
theorem was like fig. 1. Biirk sub-
/ stantially agrees with this but would
find the inspiring figurejin the square
N atman or body (fig. 2) of the
. caturasra-$yenacit-agni  (the fire-
. place in the form of the square
N falcon). The atman is 4 square
purusas in area and it is to be made
Fig. 1 by conjoining 4 squares. each of
area one square purusa. If one joins the diagonals of these
small squares as in figure 2, a square consisting of 4 triangles
results, and each of these triangles-: } the one purusa square.
Hence the theorem.

R N B. Datta’s hypothesis differs but slightly
/" ‘\\ from Biirk’s. According to him the con-
- , struction of the Paitrki Vedi as directed
% o by Kaityayana would immediately sug-
N P gest the theorem. For the prescription is:

Fig. 2
dgmat faged wgest Fear TN wHa:, § qaifa: 1 (K. Sl 11. 6)

(In the construction of the Paitrki Vedi make a square of area
two square Purugas and have nails (for the corners of the Vedi)
1Also quoted by A. Biirk.
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at the middlie points of the sides. That is the construction). The
diagram for the construction, which will be the same as fig. 2,
yields the theorem as an inference without any alteration or
addition. As such, this hypothesis seems to be the most
plausible.

For the theorem as applicable to the general rectangle or to
the right triangle, most authorities including M. Cantor have
surmised a numerical origin. The early mathematicians making
figures with pebbles must have noticed that 9 and 16 are square
numbers and when the two are combined to give 25 pebbles,
the new pile of 25 pebbles also is capable of being arranged as
a square. The superior antiquity of the knowledge of Pytha-
gorean numbers as compared to a recognition of the properties
of the right triangle in Babylonia is the basis for this surmise.
Thibaut accepts the same explanation for the discovery of the
theorem in India, but adds that the Indians might have drawn
the squares on the sides and diagonals of rectangles, divided
these squares into unit squares, and found out by actual count-
ing that the number of unit squares in the square on the
diagonal is the sum of the unit squares in the squares on the
sides. Such a discovery is plausible especially in the light of the
direction, @ ¥weaq in Katyayana’s.
qraes AT asala qraraErar aut: watta, arg aueq )

(ILL. 3)
(There will be as many times as many small squares® as there
are units in the cord. These should be added together). That
is, area was determined by dividing the figure into unit squares
and counting these squares. And to the authors of the Sulba-
stitras, ever busy with figures, lines were karanis, producers of
areas and mere curiosity might have driven them to count the
number of unit squares in the square produced by the diagonal
of a rectangle.

Biirk and Datta turn to the enlargement of a square practised
by the Vedic priest as the source of the theorem. A particular

! dpastamba (111. 7) has the same sitra with slight changes in the wording.

2] have taken varga to mean square though Thibaut, Biirk and Datta take
the word to mean group. The repetition of the word tavaniah and the use
of the word varga in the sense of square, common in later mathematics, make
this interpretation more plausible.
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application of such enlargement occurs in Baudhayana’s rulé
for the construction of the Sara-ratha-cakra cit, i.e. the fire-place
in the shape of a wheel with spokes. Bricks are to be made in
such proportion that 225 of them together make up the ordain-
ed area of the fire-place. To these, 64 similar bricks are to be
added and the total (that is 289) is arranged as a square. For
this, a square of 256 bricks is to be made first and the remaining
33 are to be puf round it. Whatever the necessity for this strange
direction, when 289 bricks could be arranged straight away
as a square with 17 bricks in each side, this makes it clear that
enlarging squares by adding gnomons was a well-known practice.
And if the Indians had begun with a square of side 1, adding
gnomons -to it to get squares with side 2, 3,...... ., one by one
they would easily have noticed 32 -+ 42 = 52, 152 4 8% = |72
etc. To explain the geometrical character of the enunciation of
the theorem in the Sulbasatras, Biirk ! fancies that the Indians
might have put the squares 32, 42, 52 as in Fig. 3 and thereby
discovered the rational right triangle 3, 4, 5.

To speculate on whether the Indians had a proof for the
theorem or what the proof could have been is idle. The Sulba-
siitras, our only means of knowing what the condition of
mathematics then was in India, are only practical manuals for

12.D.M.G. 1901, pp. 567-68 and Datta-Science of the Sulba-pp. 125-127.
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the construction of the altars. Proofs are outside their scope.
Very likely they had proofs orally transmitted to the enquiring
student.

The constructions dealt with in the' Sulbasitras comprise the
construction of the east-west line; of perpendiculars; of squares,
rectangles, and trapezia; and of triangles and rhombi equal in
area to a given_square; conversion of squares into rectangles
and vice versa; of squares into circlesand vice versa.

2.6. Determining the east-west line

This was preliminary to the construction of all the altars and
fireplaces described in the Vedic literature. But it is only Katya-
yana and Manu that give the details of the procedure. Baudha-
yana and Apastamba take the praci or east-west line for granted.
oy fraw ngefrgar war wwd ofcfasr aa ey weawssman fagafa

aa ww fagfa a7 arsir
(K.SL 1.2

(Fixinga pin (or gnomon) on level ground and drawing a
circle with a cord measured by the gnomon, he fixes pins at
points on the line (of the circumference) where the shadow of
the tip of the gnomon falls. That is the praci.)

This is the direction for fixing the praci, which is therefore
the line joining the tips of the shadows of equal length cast by
an object in the forenoon and afternoon. This method of fixing
the east-west line is given in the Tantrasamuccaya and other
works on architecture and the Tantra works dealing with
the construction of mandapas (sheds or halls) and kundas (sacred
fire-pits) .

2.7.1 To draw the perpendicular bisector of a given line

a. The method is explained by Katyayana in connection with
fixing the udici, the north-south line after the east-west line is
fixed.

FEa< AT, WY Fear, wgEar: ar wfagsa, dfamam w5y wg el

Ty W
I 3)

1The Manava Sulbasitra (p. 2) gives the same method. Cantor mistakenly
says (Vorlesungen iiber Geschichte der Mathematik, 4th Ed. Vol. I, p. 637)
that the Sulbasirras are silent over the method of determining the pracl.
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(Doubling the distance between them (the end pins) on a cord
and making ties one fixes the ties on the pins, stretches (the
cord) to the south and strikes a pin at the middle point (of the
cord). Simjlarly to the north. That is the north-south line).

This is the same as the modern method of drawing the
perpendicular bisector of a line. Only, instead of drawing inter-
secting arcs to get two points equidistant from the ends of the
line, isosceles triangles are drawn on either side of the line with
the line as the base and their vertices are joined.

Fig. 4

2.7.2. Such arcs themselves are used to draw two perpendicular
diameters in a circle in Baudhayana’s recipe for drawing a
square.

—yaraifaey, o Wy uxy, frgrarwfenr qret sfaqsr s qoed aftfaga
faswesreaar: wg fagamg 1
qEfend arai sfaqsa i Aved afefrdq qamefer |« 3 ga g¥arat 3T iy
faswrrara=ag |

(B.SI. 1. 22-25)
{Drawing a line one fixes a pin at its middle. Slipping the end

ties on to this pin, one draws a circle with the mark (the
middle mark of the cord) and fixes pins at the ends of the
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diameter, With the
end-tie on the east-
ern pin one draws
a circle with the
whole cord. Simi-

E
larly at the western N\/ 5
/k ’
W

pin.  The second
diameter should be
stretched  through
the points where
these (circles) in- Fig. 5

tersect.)

This method is well-known in later Indian mathematics as
the fish’ method, the name being based on the fact that the
lenticular portion common to the two intersecting circles has
roughly the shape of a fish.

2.7.3. The most primitive method of drawing a square with a
bamboo employs the ‘half-fish’to draw a perpendicular at the
middle point of a line. The detailed instructions are:

AT ASATT FAFgEIaTaaT Joifweg FAfa ey ghaq |

waer gUrAEdn wqysd av famy fox'y wiem fage sepswaaeat  afaonag
affa@srarn |

Fry=y qEenrRaRfeny sfagsy afaor s afifagzrag |

I I ey sivraa oifver’ sfagsa gwiafc sarawy e av faam,
sy fod ww faga, afenq weaw Ifyer whmse, famafal sfasera
foma): i frgla, @ qewwgee:

(dp. St. VIIL. 8-10 & IX. L.!

(At an interval which is as much as the sacrificer with uplifted
hands, he makes two holes on the bamboo and a third one at
the middie (of this interval). Placing the bamboo along the
prsthyd to the west of the yapavatas (pits for the sacrificial posts)
and fixing pins at the holes he releases ‘the bamboo from the
western pins and draws (an arc) towards the south-east from
the (western) end. Releasing the bamboo from the eastern pin
and fixing it on the western pin he draws towards the south-west
beginning from the (eastern) end. Releasing the bamboo and fix-
ing the terminal hole of the bamboo on the middle pin (of the

1See also B. S/. iii. 13 fF.
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prsthyd) and placing the bamboo towards the south over the
point of intersection of the lines (arcs) he fixes a pin at the end
of the bamboo. Then slipping the middle hole on this and
adjusting the others at the end of the arcs (i.e. to touch the arcs)
he fixes pins at the holes. That is the square of one purusa).
Let AB be the prsthyé and O its middle point. A bamboo

A equal to A Bin length, is laid along
( BRI A B pivoted at A and rotated through
N ! a right angle so that the free end

o \\v:' , of the bamboo reaches the south-east

A o corner, thus drawing an arc. Again the
. bamboo is pivoted at B and the free

B e end drawn from A to the south-west
3 corner tracing another arc. The bam-
Fig. 6 boo is now placed so as to join O to

the intersection O’ of the arcs, when it will be perpendicular to
AB at O.

2.7.4. The method of 2.7.1 for the perpendicular bisector is used
for drawing a perpendicular at any given point in one of the
methods for the construction of a rectangle given by Baudhdyana
as also in one of the methods for drawing a square given by
Apastamba! and Manu2.

fgagest FaFigT arafeaaq avaat @t & o5 fagang

& gradaufva: |61 )

AradY fadgmr aradt wwygweaami gar ael wav $Af qEETEEE: e

sfagsy qaaT efaumqar aad qaw FAk |isw |
(B. SI. 1. 36-40)

{Wishing to construct a rectangle one should fix two pins at an
interval which is as much as is desired. On either side of each at
equal distances, two more pins (are fixed). Making ties at the
ends of a cord equal in length to the horizontal side, one makes
a mark at the middle. Fixing the ties to the terminal ones of
the pins at the east and stretching (the cord) by the middle mark
to the south one should make a mark {on the ground) at the
middle mark. Fixing the ties to the middle pin one stretches
{the cord) by the middle mark to thesouth over the mark already

14p. SL 1. 7.
2Ma. SI. p. 5.
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made and marks the middle. This is the top corner.)

Al e
A b5 K
As -7
B

Fig. 7

Il perpendiculars are required at A and B onthe line AB,
two points A; and A, are marked at equal distances from A.
Then an isosceles triangle is drawn on A, A, as base. The
vertex K is joined to A. Then A K is the perpendicular at A.
The method for drawing the isosceles triangle is to tie ends of u
cord to A, and A, and stretch it tight by its middle point.

2.7.5. The device most frequently adopted for drawing a per-
pendicular is to use a cord divided into two parts so that the
parts form the sides of a right-angled triangle with the line or
part of the line on which the perpendicular is to be drawn. One
instance will make the procedure clear. For making the Maha-
vedi, which is an isosceles trapezium of altitude 36 prakramas,
base 30 prakramas and top 24 prakramas, Apastamba directs,

qZ-faTUHaT TOSTIVITART ALY, FRUY TeA%, GSAZNY T JRYTFA -
dreat fRaeg, dasfoda fwogas v fref ) o s 1 @ sl '

(To acord of 36 prakramas 18 prakramas are added. Marks
are made at distances of 12 and 15 prakramas from the'other
end. Fixing the ends {of the cord) to the end of the prsthyd,
one stretches it to the south by the 15th mark and fixes a pin.
Similarly to the north. These are the bottom corners.)

The cord is 36+18=54 prakramas in length. The 12th mark
is for measuring half the top side while the 15th mark is both for
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measuring the base and for making the right
E triangle. For the remainder of the cord is 36+
N 3=39 prakramas. Therefore the parts of the
‘\ cord 39 and 15 prakramas respectively will
36 \ 39 make a right triangle with the prsthya which
\ is 36 prakramas, in length. Hence W D will
\ be at right angles to E W. Apastamba gives
\ other rational right triangles too which can be
\ used for making a right angle in lieu of the
L% 39,36,15 one. These are (1) 3, 4, 5 which num-
w IS5 D bers can be multiplied by 4 and 5 to suit the

Fig. 9.8 measurements required by the Mahavedi (V. 3)
(2) 12,513 which can be mulitiplied by 3 for marking the
bottom corners (V. 4), (3) 15, 8, 17 (V. 5), (4) 12, 35,37, (V. 5).
All these are chosen so as to make at least one of the sides
have the length of one element of the Ved.

A slight modification makes the method suitable for any
length of the given side. To cite from Apastamba again :
g WY | ‘
ardwenferadiy veemy qav #3f
qszaTaTeRt fraey gwda s e w3fa
Taraar frrdeaae garfy:

(1.2
(The measure (of the cord).is the length (of ‘the pracf). Adding half
ofitself to it one makes a mark at the latter third of the cord
diminished by one-sixth of that third. Fixing the endsto the ends
of the prsthyaone stretches (the cords) to the south by the mark
and makes a mark. Similarly to the north. Then changing to
the other side. This is the construction).
By this process, if x is the length of the prsthya the cord

is x +—;— in length and the mark is at a distance of —g———{%
5x . X 13x
=5 The other part of the cord is x +-2—.—6 =45 Hence

when the ends of the cord are tied to the ends of the prsthya
and the cord is stretched by the mark, we get a triangle whose
sides are x,—% and $2£ i.e. in the proportion 12, 5 and 13.

Therefore it is a right triangle.
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The next siatra teaches the use of another right triangle simi-
larly made with sides equal to x, 3: and %x_. Baudhayana and
Katyayana too give these constructions (B. Sl I. 29-35 and
1. 42-44; K. Sl 1. 12-15)

Apastamba’s commentators Kapardin and Karavinda think
that the particle ‘va’ in  “gmaed  Fvaea anﬁgagifa """ ” of
Ap. SI. 1.3 is meant to indicate that the method is a general

one. Any fraction —:]---of the original length can be added to

the cord. The original length combined with 2 (é:r_—i)-of the
-added part will be the hypotenuse and the rest of the cord will
be the smaller perpendicular side. This would mean Apastamba
here gives a general solution of the rational right triangle with
one side given, which is :

X
X (‘n‘" 2n(n:i—_i) ) and (x + 2n(n+l) )
2n+1 2n2+2n4-1
amm+1)" X ot
or x.2n (n+1), x (2n 4 1)and x (2n% 4- 2n+-1)
The solution can be verified easily.
For, {2n (n-+1)}2 + (2n+4+1)2.
=4n% (n*4-2n+1)-+4n24+4n-41
=4nt-4-8n3+8n%2+4n--1
=-(2n%4-2n+4-1)2
A cord divided into x and x.4/2 is also used (dp. S II. 1)

ie. X, X

2.8. Construction of squares and rectangles

Most of the above constructions for the perpendicular occur in
connection with the construction of squares, rectangles and’
trapezia. Four distinct methods are detailed for the construct-
jon of the squase, one of which is applicable to the rectangle
also.

2.8.1. A straight bamboo of the length of the side of the square has
holes at its ends and middle. With the- bamboo lying along the
prsthya pins arefixed at the three holes. Then by the method des-
cribed in construction (2.7.3) for the perpendicular, the bamboo
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is placed at right angles to the prsthyd at its centre and the end
of the bamboo is marked with a pin. Now the middle hole of
the bamboo is slipped on to this pin and the bamboo is ad-
justed so that its ends touch the arcs. The ends of the bam-
boo then mark the corners of the square. Since the bamboo in
p its final position is tangential to the

A R two arcs, it must be perpendicular to
‘\\ /'1 the radii at the points of contact and

N/ these radii are the two horizontal sides
OfF-------+ P '/*\' Q  of the square. Hence the construction.!
/" \ Dr. B. B. Datta points out that the

__/" practice of measuring out the fire-altar

B C  with the bamboo-rod is mentioned in
Fig. 9 the Taitririya Samhita (V.2.5.1 ff) and

in the Maitrgyant (iii. 2.4) Katha (xx . 3-4) and Kapisthala
(xxxii. 5.6) Samhitds. 1t is perhaps even older than all these
samhitas since in all these fire is mythically connected with the
bamboo.?

2.8.2. Baudhayana’s first method for the construction of a
square with a given side results in a beautiful geometrical

pattern.

=g fafidy arafsasiyg amdt womwaqamr g7ar qed gav FAf -
wiforer geat ey wg fagerrafeny arel sfansa w@wmdw aved qffagq,
fasr=at: oig frgea

q@Efeny qiet wfaqss @i aved afefedy | wawaxfens 1 & aa aigmat a
e faepramma=eq |

fasraraa: o frgaang

qafer qrat sfasa qaoq aeed afefqdaq oF afqmq of  qETREgaEREt
TSAT: FEARAAGLS VAT |

(B. SI. 1. 22-28)

(Wishing to construct a square one should make ties at both
ends of a string as long as the desired side and make a mark
at its middle. One should draw a line and fix a pin at its middle.
‘Fixing the ties on this pin one should draw a circle by the

14p. SI. VIIL 8-10 and IX.—1 and B. S/. I1I. 13 ff. Apastamba’s safras have-
already been quoted.
2Datta, Science of the Sulba, pp. 60-61 and the footnotes thereto.
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middle mark (of the cord) and at the ends of the diameter
(formed by the praci) one should fix pins. Fixing one tieon
the eastern pin one should draw a circle with the other tie.
Similarly round the western pin. Through the points where
they meet the sécond diameter should be drawn and pins should
be fixed at its ends. With the ties on the eastern pin a circle is
to bedrawn with the middle mark. Similarly round the southern,
western and northern (pins). Their outer points of intersection
form the square).

The explanation of the procedure is: The first circle fixes the
middle points of the horizontal sides of the square or the ends of
the line of symmetry. The two bigger circles serve to fix the
perpendicular bisector of the line of symmetry. The points of

O\
YN
%

w

-
N

Fig 10
intersection of this with the first circle are the middle points of
the vertical sides. Hence the vertices of the square, which will
be equidistant from pairs of the middle points of the sides, will
be obtained as the points of intersection of circles drawn with
the middle points as centres and half the side as radius, taken

two by two. This method is confined to the Baudhayana Sulba-
.satra.

2.8.3. The first construction for a square given by Apastamba is:
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FRIUHTE] TWIAATAAIAT FART | A TRAUAGHEATINT | (ST TSAAH
‘quEdaTy gfa g g sawaar: et sfaasa weade quva faonaae
oy fafirer afa ) wead o sfaqse swaft fafae weama aeor afeo-
ey wig, frgha | afer o wlagsy qEteafad aoadm seoiR faomre
TR | S qaeny  weifen  Sfagsw weawaad w@emw fad
Afra=dg | Qe siedEl |

@ 7

(A cord of the length of the prsthya is noosed at either end.
Marks (are made) at the middle and the middles of the halves.
Stretching the cord along the prsthyi one stands pins at the
nooses (P and Q) and the marks (R, O, S). Inserting the nooses
on the pins next to the terminal ones (i.e. R and S) and stretch-
ing the cord southwards by the middle mark one makes a mark
-on the ground. Again inserting both the nooses on the middle
pin (O) one stretches the cord by the middle mark southward
over and beyond the mark on the ground and fixes a pin (E).
Inserting one noose on this pin and the other
on the eastern pin (P) one should stretch
the cord by the middle mark for the south
top corner (C). Taking off from the eastern
(pin) one fixes the noose on the western
pin (Q) and stretches the cord by the middle
mark for the south bottom corner (B).

Fig. 11 Similarly the top and bottom corners of the
north.

The principles underlying this construction are the same as
those of the previous construction. But cord-stretching, which
leaves the final drawing free of all unnecessary lines, is resorted
to in place of the drawing of circles.

This method is given by Manu! and Katyayana? also.

IM. S Lp.S.
2Kar. r. XVI. 8. 1-20 as quoted by B. Datta, Science of the Sulba, p. 62.
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2.8.4. The next method, equally useful for the square and the
rectangle, is to draw perpendiculars at the ends of the prsthya
and then mark off the length of the side on these perpendiculars
to get the corners. For drawing the perpendicular, the method
of drawing the isosceles triangle witha cord can be used as in
Baudhayana’s method for the construction of a rectangle (I. 36-
40). Or the cord can be used to form a right triangle with the
prsthya as in Baudhadyana’s construction for the square (B. S/
1. 29-35) and Apastamba’s construction for any rectangular
figure (Ap. SI. 1. 2 and 3). Apastamba achieves the construction
of the square with one operation the less, by constructing
right triangles on half the prsthya with a cord divided into two

Side . The

parts respectively equal to half the side and 4/ 2)—L2—

direction is:

IesaTAARIER 9 0%, fgad afsdenaen awei gear qdREaRA @ Fedr: ot
Fear, wean afaae sfog=a, gEfofas, swiq afaomgemgsey @ g
gaemarfer sfasa, auvdy st shfrmasga ) qaged sty

(dp. SI. 11. 2)

(Fixing pins atthe ends and middle of the prsthya one should
add to a cord of half the length its visesa (\/—Z-ﬁl of any
D E ¢ length is known as its visesa in the
Sulbasitras), make a mark there and
Q’(/)’/ "then add half the side again. Making

6;/ nooses at the ends, and fixing the
al side with the visesa to the middle pin,
O and the other side to the eastern pin,

one should stretch (the cord) by the
mark for the southern top corner.
Taking off from the eastern pin and
A w B inserting on the western pin one

Fig. 12 should stretch (the cord) by the same
mark for the south bottom corner. Similarly the northern top
and bottom corners.) (Fig. 12). In 1X. 3§pastamba uses .two
bamboo rods equal to one purusa and \/ 2 purusas respectively
for constructing a square one $q. purtisa 1n area.
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2.9. Construction of a trapezium with the face, base and altitude
given

The name for a trapezium used by the Sulbasitras is ekato’nimat
(smaller on one side).r Mahévedi, the vedi for the soma sacrifice
of paramount importance and other vedis too were to be trapezia
in shape. Hence the Sulbasitras dwell
on its construction in detail. The
method used is essentially the same as
for the construction of the square
and the rectangle using a right-angled
triangle. But various rational right
triangles which will suit the measure-
ments of the Mahavedi are given.
Once the perpendiculars at the ends
of the prsthyd (theline of symmetry or
altitude) are drawn, the lengths of the
top and bottom sides can be marked
off on them. Since the measurements

Fig. 13 of the Mahavedi are altitude =- 36
prakramas, base =30 prakramas and face=24 prakramas, the
eligible right triangles, according to Apastamba, are:

Wets » B

36, 15, 39 (dp. SI. V. 2)
3, 4, 5 multiplied by 4 & 5 (p. SL. V. 3)
12,5, 13 (dp. SI. V. 4)
15, 8, 17 (» » V.5
12, 35, 37 Co e oo )

Baudhdyana recommends his method for constructing a rect-
angle for the construction of a trapezium also (I. 36-41) i.c.
drawing the perpendiculars at the extremities of the prsthya by
the isosceles triangle method and then marking off the half
sides on these.

2.10. Transformation of Figures

The votive fire-altars were prescribed different shapes accord-
ing to the specific benefit sought for — the §yenacit (the fire-place
in the form of a falcon) for attaining heaven, the praugacit
(the fire-place in the form of an isosceles triangle) for destroy-

‘B.SI1.T72.
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ing enemies and so on. But all these different shapes had to
have strictly the same area, viz. 7} sq. purusas. Hence were
evolved methods for transforming one geometrical figure into
another, more especially the square into other equivalent geome-
trical figures. These constructions are given below.

2.10.1. To convert a square into a circle

No geometrical method can achieve this exactly. What the
Sulbastitras do is to give approximate constructions. The centre
O of the square is joined to a vertex A and the circle is drawn
with half the side of the square combined with } the excess of
OA over half the side of the square,! i.e. if ‘@’ is the side of
the square and r’ the radius of the circle.

\/_2— a a

+.w

2.2
a ><(24—\/2)

I ==

'N{ &

3

T2 3

The value of = calculated from this is only about 3.088. But
according to some of the commentators, the last sentence of
this rule, namely Sanitya marpdalam, is to be split as S@ aritya
mandalam, when it will mean that Apastamba and the other
authors of Sulbasiitras as well were aware that this was an ap-
proximate method only. Thibaut and Biirk, understandably, do

not accept this explanation.

2.10.2. 7o convert a circle into a square

All the three important Sulbas direct us to divide the diameter
into 15 parts and to take 13 of these parts as the side of the
square i.e., if d is the diameter of the circle? and a the side
of the equivalent square,
a = ig d, whence = - 3.004

Baudhayana gives a slightly better approximation too.

ques Iges fasieq faseeameeY wim gaar winismiana fawsa gsaifawfa
WG AFIET T T3 HEAAT | (B. SI. 1. 59)

3Ap. SI.1M. 2; B. SI. 1. 58 and K. S/. 111
24p. SI.111. 3; B. SI.1. 60 and K. S/. 14
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(Wishing to convert a circle into a square one should divide the
diameter into 8 parts, divide one of these parts again into 29
parts and subtract 28 of these (29th parts) together with one-
sixth of one of these parts, the latter being diminished by one-
eighth of that (one-sixth part) ).

28 1 1
829 6829 T 68298 )

This value is based on an inversion of the relation between r
and a given in connection with the problem of circling the square.
How exactly the value was brought to the form of this long and
complicated fractional expression is a matter for speculation,
but may not be of geometrical interest.

i.e., a=d (I —

2.10.3. To convert a rectangle into a square

Apastamba’s rule is:
dedugest guaged faandq fades avarafsey @9 fassavma sugeang gvs-
quTegAT 89349 | awq fAgrE I
(dp. SI. 1. 7)
(Wishing to turn a rectangle into a square, one should cut off
a part equal to the transverse side and the remainder should be
divided into two and juxtaposed atthe two sides (of the first
segment). The bit (at the corner) should be filled in by an im-
ported bit. The removal of this has been explained already).
If ABCD is the rectangle,
D, F C: a square AB, C, D with
\& side-<AD, is cut off from
\\\ C it. The remaining rectangle
D E B, BCC, is divided into

I two equal stripsB, B, E C,
| and B, BCE. The strip
| B.BCE is cut off and appli-
| ed to the side of the square
| DC,. Now we get a square
] of side AD, with a small
A B B2 B square C, E C, F unfilled

Fig. 14 up at one corner. The lar-
ger square is completed and the imported square in the corner
is removed by the method of removing a square from a square,
{given in 2. 11. 4.).
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Baudhdyana (1. 54) and Katyayana (III. 2) give the same
method. Though this method works with any rectangle?!
Katyayana provides for a very long rectangle with a separate
sitra.
sfgdrd afqrgaratalion sufedwawida g oy agEmEeaEg |

(K. SI. 11 3)
(If the rectangle) is very long, cut off repeatedly by the trans-
verse side (breadth) and join the squares so formed into one big
square, and then the remainder of the rectangle should be joined
to this square as it fits (to form a square).

The method is no improvement over the general method,
since here no side of the remainder rectangle will be equal to
the side of the bigger square to which its strips are to be joined.

2.10.4. To convert a square into a rectangle

arager feSged (AR mafseag aradt aifawet g gafas @
AFTIRIIZEATT |

(Ap. SI. 111. 1)2
(Wishing to convert a square into a rectangle one should make
the lateral side as long as is desired and the excess should be
joined suitably.)

We are not told how exactly the excess is to be joined.
Thibaut and Biirk suggest that this was achieved by repeated
E C slicing and joining. IfA BC D

is the square and the side of

F H the rectangle is to be A D,,
arectangle A B by AD,is
sliced off first. From the re-
maindera rectangle with length
equal to A D, can be obtained.
This is sliced and joined to
A B C, D, as shown. The re-
maining square is to be sliced
Fig. 15 and put together suitably so

as to get a narrow strip with length=A D,, which is then

7

\/

SOUMAANNY

7z

11f the length is greater than thrice the breadth, the dganru or imported
square will be the bigger square.
2Also B. SI. 1. 53.
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again joined to A F; I D,. This procedure is not merely empiri-
cal but also highly unsatisfactory, since there is no guarantee
that the remainder square always yields a rectangle of the
requisite length.
Apastamba’s commentator Sundararaja, explaining this sutra,
gives a purely geometrical and exact construction.
arafese arg awrEaY qr=at Fafacar saTgal FOTsTAISEY, T AAAGTANALAAT
aaageafadgarat ga faeafa ag swx g afuwie fademdi gk, ag -
= wafa 1
(Producing the sides of the square eastward to the desired length
of the lateral side, one should draw the north-eastern diagonal.
The part of the transverse side to the
FK--.H E  north of the point where the diagonal
1N cuts it is to be discarded and its southern
RN part is to be made the transverse side of
D G C the rectangle. That will be the rectangle.)
RS Let AB CD be the given square.
\ Produce AD and BC to Fand E so
AN that A F—B E==the required side of the
AN rectangle.  Complete the rectangle
AN A BEF and join the diagonal BF
A 1 B cutting C D in G. Through G draw a st.
Fig. 16 line IH parallel to the sides of thesquare.
Then IBEH is the required rectangle.
For, FAB=FEB

IGB=GCB
and FDG=FHG

Hence rect. AI G D=rect. GCEH
-.rect. 1BEH=rect. IBCG +rect. GCEH
=rect. IBCG 4 rect. AIGD
=sq. ABCD
Here the case where the given side of the rectangle is greater
than the side of the square only is dealt with. But with slight
change the method is applicable to the case where the side is less
also.
Baudhayana and Katyayana give an easier method.
graged Adager faRd asisvanfen fAaedatyisaIgaIa@RINE AT |
fowsi Jera Swagfafa s (K. SI 111 4

!Also B. SI. 1. 52.



38 Geometry in Ancient and Medieval India

(Wishing to transform a square into a rectangle one jshould
cut diagonally in the middle, divide one part again and place the
two halves to the north and east of the other part. If the figure
is a quadrilateral one should place together as it fits. This is the
distribution), Let A BC D be
F the square. Itis cut along AC to
form two right triangles. The -
A B C is again halved along the
D C altitude B E. The two halves
BE A and B EC are then re-
< moved to the positions D F C
G Y and D G A.

7 Then, obviously rect. ACFG
=sq. A B C D. The defect of
7 this method is that the reciangle

A B cannot be given any desired
Fig. 17 side.

2.10.5. To convert a rectangle or square into a trapezium with the
shorter paraliel side given.

Baudhiyana deals with this problem.
sgermdistmf=aFdy afma: ol fdemdl gar avnwar fowsy
faqdedaadiTgeaT |

(B. SI. 1. 55)
(If one wishes to make a square or rectangle shorter on one

side, one should cut off a portion by the shorter side. The
remainder should be divided by the diagonal, inverted and
attached on either side).

If ABC D is the given rectangle, let the rectangle A FE D
be cut off so that A F=D E=the given shorter side. The re-
maining rectangle E F B C is
D E S 0be cut diagonally along
= B E and the portion BE C
3 is to be inverted and attach-
ed to the side A D of the
3 rectangle in the position
S E'AD. Then DE'BE is
EY A F B the equvalent trapezium.

Fig. 18
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The Satapatha Brahmapa szems to give another method for
this conversion.?
agfawegafafufady | sgfavaeay & wEd, maEstraiaaiaaiaaa e
qraded aifedy 1 @ Sgitena swadlsaa  greefy, @Eg saggio
gagafataata 91 sia: #qfq
(He measures by 24 angulis. For Gayatri has 24 letters and agni
is of Gayatri. As much as is the agni, as much as is its measure,
by that much he measures them. He contracts 4 gngulis inwards
on both sides. He stretches 4 angulis outwards on both sides.
as much as he contracts, so much he stretches. Thus he does not

make it exceed (the right measure) nor does he make it smaller).
’ Datta takes this to mean?

’
D D C c that the face of the square
(ABCD) is shortened on
either side by a small length
(D D'=C C’) and the base is
P Q lengthened on either side by
\ the same length to A’ and B’.
Then the area of trapezium
A'B’C’D’ =the area of square
\ + ABCD. and obviously so, since
A B B PDD- APAA
Fig. 19 and A, QCC == A QBP
The other Sulbasitras do not deal with this problem.?

!

A

2.10.6. To convert a trapezium into an equivalent rectangle

Apastamba tackles the converse problem of converting an
isosceles trapezium into an equivalent rectangle. It is not given
as a general prescription but rather as a means of finding out
the area of the trapezium of the Mahavedi.

aferorendars_grewy afemreat Svar froale, €3 favde gava Soaw | ar
<raf agan | agmEt ety |

(From the southern top corner one should drop a perpendicular
on the southern botto u corner at a distance of 12 ( padas from

1§, Br. X 2. 1. 34,

2Science of the Sulba, p. 91.

3B.B. Datta says (Science of the Sulba, p. 92) that Ap. SI. XV-9 ff deal with
this problem, but in the edition I am using the said satras do not deal with
this problem.
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the prsthya). The removed bit si.ould be placed inverted at the
northernside. That is the rectangle. One sheould study it thus
joined).

That is, to convert the trapezium
A B C D (parallel sides 24 ft. and
30 1t.), C B i~ drawn perpendicular to
A B, B’ being 12 padas away from
PQ, the pri:thya. The triangle C B’ B is
then placed in the position A D D’.
Thenrect. AB CD'= trapp ABCD

Fig. 20

2.10.7. To construct an isosceles triangle equai in area to a given
square and vice versa.

Conversion of a square into an equivalent triangle, being necessary
for the construction of the Praugacit, is tackled by all the three
important Sulbasitras and all of them give the same prescription.

armAfaemfaaRe fgraradt sfa wged gear, qd@n AT wElq A0

saarfadq | a1 faar ssaq
(A. St XIL. 5p

(Making an area which is double as much as the fire-altar with
the aratmis and pradesas, into a square, one should draw lines
from the middle point of the eastern side towards the bottom
corners. That is the equivalent prauga (isosceles triangle).

Let A B C D be a square of twice the

D E ¢ required area. Let E be the middle
, point of C D. EA and E B are joined.
! Then A E B is the required triangic. For
X if the altitude EF is drawn, the square is
! divided into 2 equal rectangles A F E D
! and F B C E.
) AFE - lrect. AFED

A F B und FBE . jrect. FBCE

Fig. 21 . Whole AEB - }sq ABCE.

1See also B. SI. 1. 56 and K. SI. 1V. 5.
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This construction leads to the formula,

area of a triangle -= | base x altitude.

The converse problem is treated by Katyiyana caly.

y9% ages FANT wed wrestagfrew fawdew guma  rdegesmEEe

FHENT | (1v.7)

(Wishing to convert an isosceles triangle into a square, one should

cut in the middle towards the east, place on the other side in-

verted and manipulate by the method of conversion of a

rectangle into a square.)

E C Let A B C be the triangle. Let it be cut into
two halves along the altitude C D. Let the
part D B C be applied inverted to the side
AC. Then rect. ADCE--; ABC.
Now the rectangle can be converted into an
equivalent square by the method already
given.

A D B
Fig. 22

2.10.8. To construct a rhombus of given area

aradq Aduged faga  qatved): awEraly  qrafa afwowEtaadg
afraigasSay | (dp. SI. XIL 9)
(Drawing a rectangle of the same area (i.e. of the area of the
square for the prauga), one should draw lines from the middle
points of the eastern and western sides to the middles of the
southern and northern sides. That is the rhombus of the same
area).
Let A BC D be a rectangle of twice the
b G C area of the rhombus, Let E, F, G, Hbe
the middle points of the sides. E F, F G,
GH,HE are joined. Then rhombus
F EFGH - Yrect. ABCD.

A E B
Fig. 23

1Also B. SI. 1. 57 and K. S%. 1V. 6.
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2.10.9. To transform a rhombus into a rectangle

This converse construction occurs in Katyiayana only.

IuamgeTt Feuek Refnafswg qfaq auedq

(K. Sl iv. 8)
(If it is anubhayatal prauga one should cut transversely along
the middle and join together as before.)

The process is exactly the same as for
the prauga. The rthombus is first divided in-
to two isosceles triangles by joining a diagonal
and again into 4 right triangles by cutting
along their altitudes. The four triangles are
joined together to form a rectangle.

Fig. 25

2.1L1. Combination of areas and the converse

By the application of the theorem of the square of the diagonal
the authors of the Sulbasiitras combine any number of squares to
form another square.

For, combining two equal squares i.e. for doubling a square
Apastamba’s rule is:
aner fgEHTt ) d. 5»
(The diagonal of the square is the double-maker.) Hence if a
square is drawn on the diagonal of the given square, it will
produce double the area. The diagonal will therefore be V72 a
where a is the side of the square. It isnoteworthy that the
Sulbasitras  give a very close approximation to the value
of /2
THN QAT ai AT weAngieanAT afgd:

(dp. SI. 1. 5and B. SI. 1. 61-62)!

(The measure should be increased by one-third of itself,
which again is increased by its one-fourth and diminished by

1

‘34 th of that (second) increment. This is the savisesa.)

1Also K. SI.11. 13,
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. - 1 1 |
ie. V2 =1+ 3+ 537 T4

(This result must have been arrived at by Rule of Three and
the method of repeated correction.! For trebling a square
satef (g fewanam: qememaTtsaieson | (dp. SI. 11, 2)-
(The breadth is the measure (of the side of the given square’
and the length is the double-maker. The diagonal (of such a
rectangle) will be the treble-maker.)
In this way proceeding step by step one can combine any number
of equal squares.

2.11.1b  For combining a large number of squares, Katyayana
gives an ingenious method in one step.
arasATms gEEgeAFEy ARy gaifa aift wafa fods fgponaasa
uawrfgmifa | eafasiafa adqeaadfs |

(K.SI.VLL'7)
The verse is not easy to interpret. The only logical meaning
assignable is what Dr. B. B. Datta gives?, viz. “As many
squares (of equal side) as you wish to combine into one, the
transverse line will be (equal to) one less than that; twice a side
will be (equal to) one morethanthat. It will be a triangle. Its arrow
(i.e. altitude) will do that”. That
is, if n squares of side a are to
be combined, we have to cons-
truct an isosceles triangle A B C

; )
with (n--1) a as base and (@ ‘}'2113
as sides. AD the altitude is

B (n-1) a C drawn. Then AD is the sic.ie
Fig. 25 of the square whose area will

be n a2
For B D—}B C= 212
And from the rt-angled * ADB

1Thibaut’s hypothesis about the deduction of this expression (J.A.S.B.,.
1875) is ingenious, but one fails to understand the preference fgr
122 ¢ 122 . 288 172- -1 when the earlier 22 + 22..8. -32 — 1 is cqually suit-
able.

2Science of the Sulba. pp. 72-73.
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AD?.- AB*-- BD?

gﬂ‘izl)ﬂ? _{@31)3}2

# § ot D-oiny

4
—— < 4n - n.a?

Where the number is expressible as the sum of two squares

the first method itself can be shortened.
e.g.: 10--3241
40.- 62422
In such cases we can construct a rectangle with sides 32 and a
or 6a and 2aand then the diagonal will be the side of the
combined square.!
Or, in general, if n--p2-+ q2, one has to construct a rectangle of
sides pa and qa. Then the square on the diagonal will be
p2 a2+q2 a2
--a? (p*4+q?®=:n a%

2.11.2, Methods are also given for getting squares which are
fractions of a given square. Since the Saurramani vedi is to be
3 of the Saumiki, the Sulbasiitras deal in detail with the construc-
tion of a square whose area is } thatof a given square. And
the method can be extended to any fraction. Katyayana’s
instructions are clearest.
FAAFTORAT ATETIT | FRINTANTIRY ATYT FXONJAE AAW: |
AAATTEAT: JATF TN |

(K. SI. 15-18)2
(The one-third-maker is explained by this. But the original
measure (o the area) is to be divided into nine. The third part
of the side (produces) a ninth part (of the area). Three ninth
parts will give the one-third-maker.)

Here we are directed to divide the square into 9 equal parts
by dividing the pair of opposite sides into 3 equal parts by lines
parallel to the other pair of sides,3 of thesmall squares so
formed are to be combined into a square, the side of which will
then be the one-third-maker.

1K, SI. 11 8-9.
24p. SI. 11. 3 and B. SI. 1. 47.
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The commentators give an alternative explanation also. The
triple square is first to be obtained, which is then to be divided
into 9 equal parts as above. These parts will be ] of the original
square.

2.11.3. To combine two unequal squares
gHaa: FLoaT adiaat gexafeaaq | qerEEvETISTEs aaefy |
(dp. S 11. 4yt
(With the side of the smaller one a segment of the bigger one

should be cut off. The diagonal cord of the segment will com-
bine the two squares).

b C In effect, a rectangle
with sides equal to the
I E S R sides of the squares is

constructed. If a and b
are these sides, the square
on the diagonal of the

rectangular segment
A B P Q =a%ibe,

Fig. 26

2.11.4. To draw a square equal to the difference of two squares

Fgesages fafadndy arafafiEdg oo s gsafeEdg
FEEET ATIHAIAT ST T v Sqagq 91 ad fanderasierang
(dp. SL. 11. 5)2

(Wishing to deduct a square from a square one should cut off a
segment by the side of the square to be removed. One of the
lateral sides of the segment is drawn diagonally across to touch
the other lateral side. The portion of the side beyond this point
should be cut off.)

1Also B. SI. 1. 52and K. SI. II. 22.
2Also B. S/. 1. 51 and K. SI. 11I. 1.
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D F C Let A B CDbe the larger square, and
JRENg A E the side of the square to be removed.
> " The segment AEF D is cut off AD

is drawn diagonaliy across with A fixed,
till D touches E F at P. Then E P is the
side of the required square. For, from
the right triangle A E P,

A E B  EP2—AP2 AE?..AD?*—AE2
Fig. 27 This explanation is given by Apastamba
himself in the next satra.

2.12. Geometrical truths implied in_the constructions

The theorem of the square of the diagonal which s also explicitly
stated, is indeed, of supreme importance. Many a construction
(e.g. the combination of areas) is based on this. The converse of
the theorem, though not stated as such, is of equally wide appli-
cation. One of the commonest methods for drawing a perpendi-
cular is to use the right triangle. This use is not the outcome of
a chance observation that certain sets of lengths like 3, 4, 5
produce a right triangle. A considerable number of rational
right triangles and a few irrational right triangles' with approxi-
mate values assigned to the irrational sides are found to be
employed. This makes it clear that the converse theorem was
well established amongst these early gecometers.

The other geometrical facts tacitly assumed are:

(1) A circle is the locus of points ata constant distance from
a given point. This is made use of in Baudhayana’s first method
for the construction of a square by drawing intersecting circles
and in the method for drawing perpendiculars with the help of
intersecting circles employed by Apastamba, Baudhdyana and
Katyayana.

(2) The perpendicular bisector of a line ts the locus of points
equidistant from the two extremities of the line. This is implied
in the construction of perpendiculars by means of intersecting
-arcs.

(3) The line joining the vertex to the middle point of the
base of an isosceles triangle is perpendicular to the base. The

M. SI p. 6-7.
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method of drawing a perpendicular with a string divided into
equal parts is based on this.

(4) The tangent to a circle is perpendicular to the radius at
the point of contact. In one of the methods (2.8.1) for con-
structing a square with the help of bamboo rods employed by
Apastamba, the middle point of the side parallel and opposite
to the prsthya (which itself is one side) is found first, in the
course of which two arcs with radii equal to the side of the
square and centres at the extremities of the prsthya are to be
drawn. The next step is to place the bamboo rod with its centre
pivoted at the middle point of the side and to adjust it to make
its ends touch the circular arcs. The points of contact are the
vertices of the square. Here, the operator must have been fully
conscious that the bamboo rod placed tangential to the arc
will be at right angles to the radius at the point of contact,
which is the adjacent side of the square.

(5) A finite st. line can be divided into any number of equal
parts. Instances are too many to requite quoting.

(6) The diagonal of a rectangle or square bisects it. The
construction for reducing a square to an equivalent rectangle
with a given side (dp. SL III. 1and B. SI 153) and others
presuppose the knowledge of this geometrical fact.

(7) The diagonals of a rectangle bisect one another and they
divide the rectangle into 4 equal parts, the vertically opposite
ones of which are equal in all respects. The knowledge of this
truth is evidenced in connection with the construction of the
bricks for covering the fire-place. Here the brick got by cutting
a rectangular block along one of its diagonals is called an

D C
E
A B
Fig. 28

.ardhyé (half-brick), while all the four bricks got by cutting along
both the diagonals are termed padya (quarter) bricks, the acute-
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angled pair (BEC and AED) being called Sila-padyas! (spear-
shaped quarter-bricks) and the obtuse angled ones dirgha-pédyas
(long quarter-bricks).  The authors of the Sulbasatras were
also aware of the fact that these pairs of quarter-bricks when
again divided into two equal parts by perpendiculars dropped
from the vertex, produced 8 identically equal right triangles.

(8) The diagonals of a rhombus bisect each other at right angles.
For converting an Ubhayatah-prauga (rhombus) into a rectangle,
Katyayana instructs us to cut the rhombus into two equal
isosceles triangles along a diagonal and then procged as for
the prauga or isosceles triangle. The procedure for the isosceles
triangle implies that the line joining its vertex to the middle point
of its base is perpendicular to the base.

(9) The area of an isosceles triangle is equal to half the area
of the rectangle with sides equal to the base and altitude of the
triangle. This is made use of in the construction of the praugacit
(the fire-place in the shape of the isosceles triangle). Since altars
were not constructed in the shape of scalene and equilateral tri-
angles, we are not in a position to know whether the Sitrakaras
realised that the above relation held for all triangles.

(10) The figure formed by joining the middle points of the
adjacent sides of a square is itself a square and its area is half
the area of the original square. The Paitrki vedi which is to be a
square of area | sq. purusa with its vertices towards the cardi-
nal directions, is constructed by drawing a square of 2 sq.
purusas in the ordinary way and then joining up the middle points
of the side.?

2.13. Properties of similar figures

The enlargement and reduction of the vedis and agnis practised
by the priests resulted in, or rather necessitated, some insight into
the properties of similar figures. The Sulbasiitras bear witness
to the accurate practizal application of the knowledge of two im-
portant properties of similar figures.

(1) The corresponding sides and lines of similar figures are
proportionate. One application of this theorem is particularly
interesting. Speaking of the construction of the bricks called

1p. SI IIL. 167-69 with Thibaut's transiation.
2K, SI. 1I. 6.
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pak;e;tc'zkas, the bricks to be used in the wing of the vakra-
paksasyenacit (the altar made like a falcon with curved wings)
Apastamba says:

qaFreareaead faggart | qETIIT AIFATAT | JEAIFTAILESIT FIG ITFIIF
qgeeaT. Teane saFifa andg 1 (XX, 8)

(The transverse side is &th of the side of the wing and the
lateral side is } of a purusa. lts frame should be expanded
diagonal-wise. The planks should be inclined by ith of the
paksanamani-—the slope or gradient of the wing).

C Here what is meant by

- the paksanamaniis the verti-

| cal height of the tip of the

D P inclined wing from the hori-
-7 ] zontal. ABCD is half the

- - wing, where CB lies along

-7 _— the vertical. If CB is pro-

(/ B duced to meet the horizon-
R Pl S tal through A in E, BE is
the paksanamani. The bricks

A 1 E which have as their trans-

Fig 29 verse side 1 of AB are to
have the same inclination. To effect this the frame for making
the bricks is to be given a namani= 1 the paksanamani.

i.e. if A P Q R isa brick and Q P is produced to meet the
horizontal through A in T we get a triangle A P T similar to
the triangle A B E.

.PT AP 1
""BE_ AB~ 7T
1

orPT = - BE

Here in addition to the knowledge of the properties of similar
triangles, we can detect rudimentary ideas about trigonometri-
cal ratios of angles.

(2) The areas of similar figures are to each other as the
square of their sides.

The Sulbasiitras record many occasions of decreasing or in-
creasing the size of vedis and agnis in given proportions. Thus
the Sautramani vedi is to be one-third the Saumiki or Mahavedi
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and the vedi for the Asvamedha is to be double the area of the
Mahdvedi. In the performance of the votive sacrifices, the area
of the fire-altar for the first performance is to be 7} sq. purusas,
and for each subsequent performance, the area is to be increased
by one purusa But the shape and the proportions of the
original agni are to be retained religiously. The device adopted
to accomplish this is to keep the number of units in the sides
unaltered, but to change the size of the linear unit in the ratio of
the square roots of the areas. Thus, for the Sautramani vedi the
injunction.for whose area is:
aYfagar RiaqHR awdfa Namear RfE@E

(dp. SL. V. 8)
(It is learnt about the Sautramani vedi; sacrifice in one-third the
area of the Saumiki vedi), the prescription for construction

runs.
FANE JAAFRON wFAeAHtar qafa  faswn ar, afes sfadfa fadgaeat

grafuesr qesar |
(dp. SI. V. 8)

(The one-third maker of the (square) prakrama will be in the
place of the prakrama. Or by the triple-maker. The transverse
sides will be 8 and 10 and the prsthya will be 12.)

Two methods are given here. Either the unit can be taken as
A/} of a prakrama and the measurements of the Saumiki vedi
viz. 24, 30, 36 can be retained, or 4/ 3 of a prakrama may be
kept as the unit, when the number of units in the sides will be
8, 10 and 12. In the first case, the area of the Sautrémani vedi
is viewed as } that of the Saumiki, whereas in the second case
it is viewed as thrice one-ninth of that area. Besides the know-
ledge of the properties of similar figures, this equation implies a
sturdy grasp of the relation between length and area and the

nature of surds.

1Eggeling in a footnote on p. 310 (S.B.E. Vol. 43) of his translation of the
Satapatha Brahmana says that the intermediate sizes of the fire-altar increase
each by 4 sq. purusas or by one man’s length ou each side of the body of the
aitar. But he seems to be labouring under » misconception. Correct inter-
pretation of the passage is difficult unle:s a person, is acquainted with
the contents of the Sulbasirras. And-the Suisisdtras are all agreed that the
increment should be one sq. purusa.
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The method adopted in vidhabhydsa—increasing the area at
every subsequent construction of the agni—is based on the same
principle. But since the increased size is not a multiple or fraction
of the original area, an ingenious modification is introduced.
The process as explained by Baudhayana is:!

The excess of the area above the basic 7% sq. purusas is made
into a square or rectangle, as is convenient. The figure is then
divided into 15 equal parts. Two such parts together are turned
into a square and combined with a square of one purusa to
yield a new square. The side of this square will be the new linear
purusa, the numerical proportions in the linear measurements
being the same as for the basic agni. That is if msq. purusas is

the excess over 7} sq. pu. inany order of the agni, /\/ 1 —+—%_n_‘

of a purusa will be the new unit. Katyayana? gives more than

.one way of arriving at /\/ /T + Eﬂl of a purusa as the unit of

measufement.
One method of enlarging geometrical figures based on the
same principle is mentioned even in the Satapatha Brahmana.

2.14. Areas

The Sulbasitras reveal a very clear conception of the relation
between lengths and areas. Apastamba says:

Fva weeriR, fafirta )
TFHH TS @ w0 |
(dp. SI. 1L, 6-7)3

(With two four, with three nine. As many units as there are in
a cord, so many so many squares are produced by it.)

1B, SL 1L 12
2. SI.V. 5, 7, and 10; §. Br. X. 2, 3, 7-10.
3Compare K. SI. IiL. 5,6,7.

In interpreting Siafra 7, Kapardin omits the repetition of graq: and takes
F% to mean row (pankti). Following him, perhaps, Thibaut, Birk and Datta
translate the portion arggearaal a:rf:f as so many rows of squares. But [
feel Karavinda’s explanation qumwwﬁrymw qmcfmmqam aa?q' is the

<orrect one and consider the later yarga for square an inheritance from the
Sulbasiitras.
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This knowledge was perhaps the common property of most
primitive peoples. But the authors of the Sulbasiitras had an
equally firm and unerring grasp of the area produced by
fractional units of length, which is infinitely more difficult to
conceive. For instance, Apastamba knows a cord of 1} units
produces 2} units of area and a cord of 2} units produces an
area of 6 units.!

Again } a unit produces } of a unit and } of a unit produces
3th (of a unit of area). A justification or explanation for this is :

me e FEsmTonaT: qIRYEOEETq

(dp. SI. 11. 10)
(Since the half of two units (i.e. one unit) fills up one quarter of
the area). Katyayana’s explanation is :

AT Gadadfa fagagiar wafa

(Since the increase in the area is according to the rule Yavar pra-
mand rajju etc. the decrease should be likewise), i.e. since the
multiplication in area produced by a:multiplication in the length
is that multiple multiplied by itself, the division in area produced
by a division in the length should be the latter multiplied by
itself. The knowledge of the areas produced by fractional units
of length or of the squares of fractions may be the result of
observation, but that empirical knowledge was cemented together
by inductive logic.

Besides that of the square, the areas of trapezia (only isosce-
les trapezia are dealt with), isosceles triangles and circles were
calculated by the geometers of that age. For calculating the
area of a trapezium we are asked to convert the figure into a
rectangle? from which it is clear that they knew how to calculate
the area of a rectangle too.

The Sulbasiitras recognise the equalities :

(1) The arca of an isosceles trapezium=-half the sum of the
base and top multiplied by the altitude.

(2) The area of an isosceles triangle - } the area of a rect-
angle whose sides are the base and altitude of the triangle.
Also from the construction for the ubhayatal prauga, twice the

YAp. SL1IL 89,
2ip. SI.V. 1.
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area of an isosceles triangle=} the area of a rectangle whose
sides are the base and twice the altitude of the triangle.
Area of an isosceles triangle =} base x altitude.
(3) The ardhya bricks, right triangles in shape, were halves of
rectangles cut diagonally.
Hence the area of a right triangle also
=} base x altitude.

We do not know whether the authors of the Swlbasiitras had -
any means of finding the area of a scalene triangle.

(4) The area of a rthombus =} the product of the diagonals.
This formula is the basis of the construction for transforming an
ubhayatah prauga (rhombus) into a rectangle or a square.! For,
the method is to cut the rhombus into two isosceles triangles first,
then to convert the triangles into rectangles with sides equal to
the altitude and half the base, i.e. equal to half the diagonals
respectively.

Hence half the area of the rhombus =the product of half the
diagonals
Whole area = half the product of the diagonals.

2.15. Rational right triangles
With the abundant liberality of an expert, the authors of the
Sulbasatras give alternative sets of numbers for forming the right
triangle. Thus Apastamba gives his disciples a choice from five
sets>—36, 15, 39; 3, 4, 5 multiplied by 4 and 5; 5, 12, 13 and
these multiplied by 3; 15, 8, 17; 12, 35, 37.—for constructing the
Mahgvedi. Baudhayana gives us a list of right triangles® giving
the sides about the right angle only. The list comprises :
3,4
12,5
15,8
7,24
12,35
15,36

1See 2.10.9 above
2P SILV 2-5.
3B. SI. 1. 49.
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The Manavasulbasatra employs some right triangles with sides
expressible in fractions for constructing a right angle e.g. 23,
6, 6}; 74, 10, 12§. We have already seen how the Sulbasiitra
" method of getting a right triangle on a given side with the other
sides as fractions or multiples of the given side leads to one
general solution of the rational right-dngled triangle viz.

2n2+2n, 2n7}1 and 2n2+4-2n+4-1

This gives right triangles whose hypotenuses exceed the longer
perpendicular side by one. But the enumerated right triangles do
not all conform to this pattern. Katyayana’s prescription for
combining any number of squares of equal size leads to the

general relation
— 2
{(32—1)} a®4-nazs= {g%-lz} %2

Dr. Datta shows how this relation can yield general
formulae satistying all the rational right triangles occurring in
the Sulbasatrast For, this, when a=1, gives the relation

r2~1 n, £+ - for the sides of the right triangle.

Putting n=m?, to get rational values, we have
m2—1 m + 1
2 T
the hypotenuse and the longer side is one. If we put a=2 in the
above relation (n—1)?+4n = (n+1)2,we get

n—1,4v/4dn&n+1
or (putting n--m? as betore).
m?-—1, 2m & m2+1 as the sides.
Here the difference is 2. Al the rational right triangles occurring
in the Sulbasiitras can be brought under these formulae.

Biirk and Thibaut think itimprobable that the early mathemati-
cians had any such general formulae as tools. Biirk suggests? that
all these rational triangles were discovered empirically in the pro-
cess of constructing larger and larger squares of bricks by the
addition of gnomons. The occasions when the gnomons themselves

. Here also the difference between

1Science of the Sulba, p. 178.
2Z.D.M.G., 1901. pp. 565-571.
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were capable of being arranged as squares must have been noted,
which led to the discovery of various sets of numbers for the
right triangle. The explanation is plausible, and this method and
other empirical observations might have led to the discovery of
a few rational right triangles; but considering that the authors of
the Sulbasiitras had a genius for generalising (witness Katyayana’s
general rule for combining squares) it is equally possible that
they had hit upon some general formulae for deriving the
rational right triangle. We also know for certain that they posses-
sed the knowledge that ‘k a’, k b, k ¢ gives solutions of the right
angled triangle, if a, b, ¢ is one solution. For one method for
making the corners of the Saumiki vedi given by Apastamba is:

faragssa: afswwmemmres, aifaferasnfadat sgoarnfa: s V3

(5 is the diagonal cord for 3 and 4. With these combined with
-themselves thrice, the top corners are to be marked ‘and with
these combined with themselves four times, the bottom corners)-
i.e. the two right triangles for marking the corners are 4.3, 4.4,
4.5 and 5.3 5.4, 5.5. Similarly in the next sitra, the sides of the
right triangle 5, 12, 13 are multiplied by 3 to gét another right
triangle.

Thus the Sulbasitras are familiar with more than one general
formula forfinding the sides of rational right triangle, though we
are not in a position to know for certain whether they had found
the complete general solution.

2.16. Early Geometrical terminology

The words trirgsri, caturasri and dasabhuji which have a geometri-
cal flavour about them, occur in the Rg Veda and the word
tribhuja in the Atharvaveda. But their exact significance is not
known. The Sulbasiitras employ a number of technical words,

(1).Caturasra or Samacaturasra stands for square, whereas
dirghacaturasra means a rectangle These words with the
synonym ayata caturasra for a rectangle have been in use ever
since. )

(2) The word for an isosceles trapezium in the Sulbasiitras is
purastad amhiyasi (shorter in front) or ekato’nimar (small to-

1:fhe Nagyasastra has a peculiar word vikrsta (II. 8) for a rectangle, but
this word is not found anywhere else in this sense.
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wards one end). The Jainas use the word vetrdsana (cane seat)
or a vetrasanasadrsaksetra (figure resembling a cane seat). The
parallelogram has seldom received attention.

The rhombus is termed an ubhayatah prauga, a double isosceles
triangle.

(3) The square when viewed as a figure bounded by four
equal sides at rightangles is termed samacaturasra or simply
caturgsra. But the unit squares into which any figure had to be
divided to compute the area are termed varga. This distinction
persists on into later days, when also a square figure isa
caturasra, but the exponential two i.e. the algebraical square,
is varga. Area also is vargaphala. Vargaksetra is the geo-
metrical representation of a square number just as a rectangle,
used to represent the product of two quantities, is termed a
ghataksetra.

(4) The side of a square is called karani, producer, which in
later mathematics is used for a surd. In the Sulbasitras, though
the concept was primarily geometrical, it was used to denote
the root of any number square or otherwise. Thus dvikarani
=1/"2, trikarani=~/ 3, catuskarani=+/"4, =2 and so on.
But in later mathematics, the roots of square numbers come to
be called mila or pada, while karani is restricted to the roots of
non-square numbers. Sometimes the word is applied to the non- -
square pumber itself. Its counterpart krti (the produced) signi-
fies the square of any number and is used as a synonym for
varga. In the Paiicasiddhantika (4,5) karani seems to be used in
the sense of a square.

(5) The diagonal of a square or a rectangle was designated
aksnayarajju or simply aksnayd, whereas the horizontal and late-
ral sides were the ryanmani and the parsvamani. The word
aksnaya (as also the word prauga for a triangle) has disappeared
from use without leaving a trace. The word has a respectable
antiquity occuring in the Rg Veda itself and being used in the

" Brahmanas in the sense of going across transversely, is well suited
to be used for the diagonai. Still in later mathematics we find
it completely ousted by a rather senseless word karna (ear) along
with all its synonyms like Sruti, $ravas. It is very difficult to
understand the semantic basis for this use. Can we fall
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back upon the Nirukta derivation from krt to cut, when the
karna will be a line dividing a figure i.e. a diagonal. Thereis a
Greek root, krino which means to ‘separate, put asunder’ which
bears a close resemblance to karna and so supports the Nirukta
etymology. The root ‘karn’ to pierce, to hear is probably a de-
nominative from karpa. Karpa used with some geometrical con-
notation occurs in the Sulbasiitras themselves. Katyayana after
dealing with the conversion of a triangle and a rhombus into a
rectangle says:

T fawviaaral sqreara:, asasuar 7 g3isfe |
wFwutai fgwutai @ anagessatzea

(K. Sl 1V,9-10)
(By thisitself the combination of trikarnas is explained. The com-
bination of paficakarnas is by cutting up into triangles. Ekakar-
nas and dvikarnas are to becombined by cutting up into squares).
What figures are denoted by these words? The commentators
are of no help in the correct appraisal of their meanings. Dr.
Datta translates paiicakarpa as pentalaterals, but finds it difficult
to retain the parity karna = lateral side in ekakarna and dvikarna.
The plain truth is the word karna as used in this context still
eludes our grasp.?

(6) Prauga which has no geometrical significance is the word
used for a triangle, for an isosceles triangle, which alone makes
its appearancein the Sulbasiitras. Katyayana uses the word tryasri
for a triangle but once only (K. S/ 1ii. 7). The word tryasra is
of common occurrence in later mathematics, though tribhuja is
more popular.

(7 A tell-tale word is isu used by Katyayana only (IIL. 7) to
denote the altitude of a triangle. [su means an arrow, but makes
its appearance with a geometrical sense quite early, especially in
Jaina literature, where, as well as, in later mathematics the word
invariably means the height of an arc. This usage is quite under-
standable if we remember that the arc is termed capa, dhanus etc.
all denoting a ‘bow’. The use of the word to denote the altitude
of an (isosceles) triangle perhaps shows that even at that early

1The word catuhbkarna occurs in the Jambudyvipasamasa (p. 5), and the
<commentator equates the word to caturasra. Does karma mean angle or
<corner and is kona a prakritisation of karna ?
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date Indian geometry was becoming or had become chord-geo-
metry, which character it retained throughout in later mathe-
matics.

(8) Mandala or parimandala denotes a circle, while parinaha,
less commonly used, stands for the circumferencé. The diameter
Is viskambha. All these words are of common occurrence in early
Jaina geometry too. But the word pradhi for the segment of a
circle becomes obsolete in later literature and is not used in early
Jaina works. Parimandala seems to be used in the sense of an ellipse
in early Jaina literature.

(9) Ksetra primarily means a figure, but sometimes also the
area of the figure.

2.17. The Sulbasitras and later ages

There is a charge against Indian mathematics that the earlier
phase has no connection with its later phases, especiaily that
the Sulbasiitra mathematics has nothing to do with later mathe-
matics. The charge was perhaps first framed by G. R. Kaye,!
in whose eyes any stick is good enough to beat the Indians with.
One could have ignored this charge if it had not been repeated
by such a responsible and unprejudiced critic of Indian achieve-
ments as A. B. Keith.2

A close study of the Sulbasiitras in relation to the rest of
Indian mathematics will reveal the following facts, out of which
a single one only can be adduced as evidence that Sulbasiitra
mathematics stands apart from the rest of Indian mathematics.

(1) The two most important achievements of Sulbasiitra geo-
metry are the enunciation of the theorem of the square on the
diagonal and the recognition of the properties of similar figures.

The whole of Indian geometry and trigonometry is dominated
by the theorem of the square on the diagonal. The study of
rational figures which fills pages in later mathematical texts, the
sine-table and even much of algebra is based on this theorem.
The field of influence of the principle of proportionality is

1The Source of Hindu Mathematics, J.R.A.S. 1910, p. 749 ff.
2A.B. Keith, A History of Sanskrit Literature, 1948, p. 517.
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even wider, holding sway as it does, over the whole of Indian
mathematics.?

(2) As far as the constructions in the Sulbasiitras are concern-
ed their rightful legatee ‘is the science of architecture. The
method for fixing the quarters given in such late works on archi-
tecture as the Tantrasamuccaya of Narayana even, is the same,
as the one given by-Katyayana. The tantra texts dealing with
the construction of kundas (fire pits) and mandapas (halls or
sheds) too employ the methods of the Sulbasiitras. Thus the
Mandapadruma of Mahadeva, written in the 17th century?
makes use of the Sulbasiltra method of getting a right angle with
cords of length 3, 4 and 5, to construct a square and mentions.
the Sulbasitras.® But an important difference is also noticeable.
The mystic importance of the correct measurements no longer
holds sway over the minds of the worshippers. Insistence on a
high degree of exactness (sauksmya) in the measurements of the
kundas and mandapas is spoken of as useless.* Hence the highly
accurate methods of construction of the Vedic altar-makers were
more or less a superfluity.

(3) The remarkably close approximation for the value of 4/ 2
given in the Sulbasatras is apparently lost sight of in later works.
But this is nothing strange. The Sulbasiitra value is a very good
approximation, no doubt, but too cumbersome for manipula-
tion, whereas the method of evaluating surds by multiplying
by a large square number such as 10000 yielded very satisfactory
results.

(4) All the technical words used in the Sulbasitras whose
derivatory meaning could contain a mathematical concept are
retained in later mathematics. (There is only one exception to
this). Instances are words like samacafurasra (square) , dirgha-
caturasra (rectangle), tryasri (changed into tryasra—triangle),
karani, varga, ksetra and the like. On the other hand the word
isu used for the altitude of a triangle in the Karydyana Sulba-

1Bhaskara II himself comments on the dominant role of this principle
(L#l. 239 and the Vdsang thereunder).

2The text has been edited with an introduction by Dr. Sree Krishna
Sharma and published in the Adyar Library Bulletin. XXII. 1958 pp. 119-57.

SMandapadruma, 1. 18-21.
4Ibid. I, 2-5.
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satra seems to be an indication of the early link between Jaina
and the rest of Indian mathematics.

(5) The one exception to the statement in (4) is the word for
the diagonal of a rectangle, the Sulbasitra word aksnayarajju
being never found again, while the usurper karna does not seem
to have an equally good claim. As against the possibility of this
problem of the aksnaya versus karpa showing a break in our
geometrical tradition, we have to remember that the word karna
already appears in the Sulbasiitras with a geometrical signi-
ficance. In the Siryaprajiiapti the phrase karpakalam is used in
opposition to the word bhedaghata to denote the gradual mo-
tion of the sun from one orbit to another! i.e. in the sense of
“diagonally’.

Thus there is no sufficient ground for thinking that the Sulba-
sutra mathematics was forgotten by later ages.

isp, i, 2.



Cuapter III

EARLY JAINA GEOMETRY

3.1. To the period of mathematical development represented by
the Sulbasiitras, probably belongs the mathematical knowledge
of the Jainas too. Dating their canonical literature is as difficult
as the dating of the Vedic literature. Forlong Vardhamana Maha-
vira, of about thesame period as the Buddha, was held to be
the founder of Jainism. But Mahavira is actually the last of the
Tirthamkaras and some of the earlier Tirthamkaras and Cakra-
vartins like Rsabha and Bharata are well known in Hindu Pura-
nic literature also. Hence it is more likely that this dissident
faith, revolting against sacrificial killing, was quite an old rival
to the Vedic faith or that it had taken root in India even before
the Vedic faith. The mathematical knowledge contained in the
Jaina religious writings should therefore have been more or less
parallel to that in the Vedic literature. Whereas the practical
necessity of building the altars turned the sacrificing Vedic tribes
to mathematics, to geometrical constructions, the Jainas were
impelled to indulge in mathematical calculations by an abstract
love of precision. Still the connection between the two is easily
noticed. The trapezium, the shape of the Mahavedi of the Vedic
religion, which in the speculations of the Brahmanas attained
cosmic significance, reappears in Jaina cosmography as the
shape of the universe, the shape of the mountains, and the
shape of the varsas (the continents). Along with this geometri-
cal figure, the circle and its parts also came to assume great im-
portance, since the earth and the orbits of the heavenly bodies
were given a circular shape. And so the geometry or rather
mensuration of the circle and the trapezium constitutes the geo-
metry of the Jaina religious literature.

3.2. The ancient works which are classed as Ganita texts are the
Saryaprajiiapti, the Candraprajfiapti and the Jambudvipaprajhiapti.
Of these the first two cover more or less the same ground — the
peculiar configiration and measurements of the paths of the
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heavenly bodies worked out into the minutest details. The earth
stretches flat with the continents and oceans alternating in con-
centric circles forming a huge Newton’s rings pattern, as it were.
The sun and the moon move in concentric circles in planes
parallel to the +earth, the circles having mount Meru as their
centre. The diameter of these circles or mandalas goes onincreas-
ing gradually. Various views about the diameter and circum-
ference of the mandalas are enumerated and rejected by the
Saryaprajfiapti. According to these the ratio of the circumference to
the “diameter of a circle! i.e. = is 3, while the value accepted by
the S. P. is the nearer approximation 4/10. This value appears
regularly in the Jaina works and even Brahmagupta adopts it.

A few other geometrical figures are imentioned:2

Samacaturasra —the equal four-sided figure

Visamacaturasra —the unequal four-sided figure

Samacatuskona —the equiangular quadrilateral i.e.
rectangle

Visamacatuskona —quadrilatera] with unequal angles

Samacakravala —circle

Visamacakravala —ellipse

Cakrardha cakravala —semi-circles

It is interesting to find a distinction being made between the
caturasra and catuskona. The accepted meaning of asra orasraor
asri is a corner and that of carurasra a four-cornered figure which
is a quadrilateral. Butin the light of the passages in which this
distinction occurs asra is perhaps to be taken to mean side.
Dr. B. B. Datta following Weber translated samacaturasra and
visamacaturasra as even and oblique square; and samacatuskona
and visamacatuskona as even and oblique parallelogram.® The
occurrence of the word kopa distinguished as equal and un-
equal, in such an early work as the Siryaprajiiapti indicates that

1Saryaprajiiapti 1. 7 and 1V.

This very rough value of w is met with in ancient Babylonian and
Chinese mathematics also. The Egyptian value of (8/9)2.4 is very near to
the Jaina value of 1/10.

25.P. 1. 8.

3B.B. Datta, The Jaina School of Mathematics, Bull. of Cal. Math. Soc.
Vol, XXI. 1929,
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the Indians had some conception of angles and that the word kona
appearing in later works is of native origin and not an Indianisa-
tion of the Greek gonia. That the visamacakravdla (unequal
circle, ellipse) should be distinguished from the samacakravila,
the equal circle is also interesting more especially when two
perpendicular diameters distinguished as gvama and viskambha
are mentioned.! These, of course, are equal in a’circle.

3.3. The Jambudvipaprajfiapti speaks about the arc (dhanuhprstha)
and the chord ( jiv@).2 The arc is also often calculated from the
chord, from which we have to conclude that the approximate
formulas occuring in the other Jaina works were known to the
author of the Jambudvipaprajiiapti. The authors of the Siaryapra-
Jjhiapti and the Candraprajfiapti also could not have been unaware
of these, since the two works have the same cosmographical
details in their background. The Jyotiskarandaka which purports
to expound the knowledge contained in the Saryaprajiiaptid
gives the following approximate formulas.4

c=4/.4h(d—h)
a—+/BHFFc
/a2 o2
h= a“s—c¢
A\ —%
c=+/a2—6h?

circumference of a cricle=4/10d2 (== d)
circumference x d
4

Area of a circle =

15 P.1. 8. In this and other passages where the circumference corresponding
to large diameters are calculated with = \/ 10 the finding of the square root
of large numbers is involved. This is not possible unless there was a system
of writing numbers with place value and zero.

2As in S. II, p. 67 and S. 16, p. 84, Sri Jambudwpaprajnaptyupangam, Jain
Pustakoddhara Fund Series No. 54.

3Jyotiskarapduka Prabhrta 1 Sitra 1.

4Satras 180, 181, 182, 183 and 184. The verse 180 rendered into Sanskrit runs
wAEH fasern] SgugEw Fai | egufoas 3d  wveds g wamg
The same word avagaha occuring in the definition and as the thing defined
makes the sense vague. I have followed the commentator Malayagiri in tak-
ing the second avagaha to mean jivzi or chord The same verse with the last

line changed into ‘gt siraT Q& am;rm is quoted in Bhaskara I's commen~
tary onthe Aryabhatiya.
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(c is the chord, a the arc, h the hzight of thz segment and d
the diameter of the circle)

The Tattvarthadhigamabhdasya (c. 150 B.c.)! of Umdsvati gives,
besides these, the formulae.?

h—} (d—A/(d2—c?
c24+h?
4
and d= T
These formulae recur in a number of Jaina religious and semi-
religious works, e. g. the Jambudvipasamasa of Umasvati (fourth
Ahnika), the Laghusanghayani of Haribhadra Siiri, which contents
itself with the expressions for the circumference and area of a
circle (Verse 7).
The first of these, which can be derived from the right triangle
formed by the half chord, the radius at its end and part of the
radius perpendicular to the chord (i.e. from the AOAD in figure
1), or from the ACAC', requires thorough familiarity with the
properties of the right triangle
and of circles and chords, for
its formulation. The next three
are rough approximations from

B the formulae for the circumfer-
ence of a circle.

For, when the segment is a

semicircle c--d and h = g

and so a = \/1_29_2 can be writ-

ten as

4d2 ¢ 6d2
4
_ 7 d N _ 4/cr6ht
VEERIES

18.B. Datta, The Jaina S:hool of Mathematics, Bull. of Cal. Math. Soc.
Vol. XX1. 1929.

2Srimadumq§vdtfvfracitam Sabhdsyatattvarthadhigamasitram  Ed. by
Khll%candrajl Siddhantasastri, Raychand Jaina Sastra Mala publication.
p. .




Early Jaina Geometry 65

3.4. There has been much speculation! about the origin of the
value 4/10 for =, found in all the Jaina works as also in
Brahmagupta. The explanation offered by Hunrath seems to be
the most plausible, since it is based on the above formula for the
chord occuring quite early inthe Jaina works. Hunrath’s explana-
tion as given by Cantor is :

The arrow of the segment formed by the side of a regular
inscribed hexagon will be hy = %(d — /\/dz — i)

3
B AR V)

4 .
= -1% takingx/ 3. %approximately.

Now the side of the regular inscribed polygon of 12 sides will be
given by 8%, h2 41 SZ(where Sg, S,, are the sides of the
hexagon and the 12-sided figure respectively.)

d \2 d \?

- ( 1'2) +i (2 )
dz 4z 1042

T 1447 16 T 124
Hence its perimeter = 12 19512

144
or (perimeter)? = 10d?
If this is equated to the square of the circumference, = comes
out neatly as 4/10.

And this value was quite convenient for the Jaina theologian-

mathematician, since the islands and oceans had always diameters
measured by powers of ten yojanas.

3.5. Solid figures

The Prajidpanopangam whose author Syimirya or Syima-
carya died in 92 B.C.2 says

1Quite a few theories have been discussed by M. Cantor in his Vorlesung-
en Uber Geschichte der Mathematik”, 4th ed., Vol. 1, pp. 647-49,

2B.B. Datta, Jaina School of Maths.
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3 woarrafoa & yeafaw oo § g1 WRETSEEGSITIRET agEvSTRoET,
4 wEaIorafiom, FStaEvarTafig, sETEHSrTRom |
(5. 4

“The arrangements (of the atoms) are said to be of five kinds.
That is, elliptically arranged, circularly arranged, triangularly
arranged, arranged as a square and arranged like a rectangle”.

Commenting on this Malayagiri says that all these are of two
kinds, solid (ghana) and plane (pratara). That is, there are
elliptical cylinders, spheres, triangular pyramids, cubes and
rectangular parallelopipeds. The minimum number of atoms (or
shots) necessary to form these geometrical figures, plane and
solid, is also given in each case. To corroborate what he has said,
the commentator quotes karamagathds in Prakrt to the same
effect. The minimum odd and even numbers of paramanus with
the corresponding configuration are shown in the table on p. 67.
The parimandala, it is said, cannot be formed with an odd
number of paramanus. The 20 shots if arranged as directed will
forma square withrounded corners rather than an ellipse. In fact
it is very doubtful if an ellipse is really meant. The Bhagavati-
stramentions all these shapes and numbers.?2 But its comment-
ator Abhayadeva illustrates the prataraparimandala made up of
20 paramanus by an irregular curvilinear closed figure. Dr. B. B.
Datta points out? that the Uttaradhyayanasiitra and the Aupapa-
tikasiitras describe the Isat pragbhara as resembling in shape an
open umbrella and conjectures the figure referred to as the seg-
ment of a sphere. The siitras say that the thickness of this solid,
greatest at its middle, decreases toward the edges at a fixed rate.
Hence mensuration of spherical segments was also plausibly
familiar to the Jainas.

3.6. The trapezium and the trapezoidal solid

The universe, according to the Jainas, is in the form of three
trapezoidal solids piled one uvpon another. As such the

13 dearAaf ot § safagn gaaqr, g, sRkawwaematoErn:, gaa-
qfoRn, eI,  APCTREIAI A, SRR —
is the Sanskrit rendering.

224th Sataka, 3rd Uddesa, S. 126.

9Jaina Mathematics, Bull. of Cal. Math. Sec., Vol XXI, 1929,
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trapezium must have been a familiar geometrical figure in their
literature from very early times. In the Jyotiskarandaka (10th
Priabhrta V. 190-91) we find a simple rule for calculating the
diameter at any height of a mountain shaped like the frustum
of a cone. The rate of increase of the diameter is given by
diameter at base—diameter at top
height

Hence the height at which the diameter is required should be
multiplied by this ratio and added to the diameter atthe top to
get the diameter at that height. The geometrical fact that corres-
ponding elements in similar figures are proportionate, known to
the authors of the Sulbasiitras and the Brahmanas, who increased
the size of the vedis without altering their shape or the propor-
tions of their parts, is apprehended in a more comprehensive and
scientific way here. The Tiloyapannatti, which from the quotations
from and the references to it in other works must be an early
work, has a fuller treatment of trapezia and trapezoidal solids
and a fuller application of the properties of similar figures. But
since the extant version of the Tiloyapannatti belongs to a much
later period, the work is reserved for treatment in a later chapter.

3.7. An important branch of Jaina religio-computational litera-
ture, viz., the karana-gathas, are either entirely lost or are yet
to be brought out of the obscurity of forgotten private libraries.
Stanzas from such works are quoted in almost all Jaina com-
mentaries. What is more, even Bhaskara I, the great exponent
of Aryabhata I’s mathematics and astronomy, quotes three
Prakrt garhas in his commentary on the Aryabhatiya. Amongst
the mathematicians mentioned by Bhaskara four bear the rather
unusual names Maskari, Pirana, Mudgala and Piatana. The
passages in which these names occur are—

QERAFE Feaqed 7 aeF-Qo-agranyfafi. grandfag 76, ¢ 54 sy
RIS AR WA .

(This has not been composed as a treatise by the dcdryas like
Maskari, Piirana and Mudgala with even one lakh verses for each
(topic). How can this acarra manage it within a short treatise 7)

1R. 14850 Govt. Or. Mss, Lib. Madras, p. 2.
2ibid, p. 74.
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iRt wEEqRT-qaTTEa: a3 & AT S, AAAAgITd @ Seargatal )
{Mathematicians like Maskari, Pirana and Piitana show the
rationale of the areas of all figures in rectangular figures.) One
of these names, that of Piirana,® occurs in the Vyakhyaprajhiapti
(3rd Sataka, Uddesa 2). Does this circumstance taken along with
the fact that Bhiskara quotes from Jaina works, warrant the
assumption that these mathematicians were Jainas ? Be that as
it may, it is a pity that mathematicians almost on a par, accord-
ing to Bhaskara, with Aryabhata and responsible for such vol-
uminous outputs in the field of mathematics should remain
mere names for us.

13bid p. 74.
20ne Purdna is mentioned as one of the sages who surrounded Bhisma.
(Mahabharata, Santiparvan, Rijadharmanusasana Ch. 47, 12),



CuaptER IV

THE TRAPEZIUM

4.1. It has been already remarked that the trapezium, more esp-
ecially the isosceles trapezium, had a place of honour both in
the Vedic religion and in the Jaina faith. Though with the
ascendency of astronomical mathematics its importance declined
a little, it continued to engage the attention of Indian mathe-
" maticians right down the ages. The Sulbasitras give geometri-
cal methods for constructing the trapezium and for reducing a
square or a rectangle into an isosceles trapezium of the same
area. Their authors knew how to compute the exact area of
the isosceles trapezium.

4.2. The earliest Jaina work to deal with the trapezium is the
Jyotiskarandaka, alleged to have been codified at the Valabhi
council of the 4th or 6th century. Here the reference is not
directly to the trapezium but to the calculation of the diameter
at any height of a mountain shaped like the frustum of a cone.
Since the vertical section of $uch a shape will be a trapezium,
this amounts to the calculation of the base or top of any sec-
tion of a trapezuim. The diameter at any height h, is given as

di + db;dt’ x hy where dp and d¢ are the diameters at the

base and’ the top and h is the total height of the mountain.
Evidently the formula is based on the proportionality of the sides
and other elements of similar figures.

4.3. The only verse in the eral}ha,tiya dealing with the trape-

zium is :

WIUTAS qUeF qANEY @Uald ¥ | faed e d o anewETy |
(Ganitapada 8)

(The parallel sides multiplied by the height and divided by their
sum give their respective patarekhas. When the height is multi-
plied by half the sum of the widths, the product should be



The Trapezium 71

known as the area in an @yama). This elliptical verse which does
not even make it clear that the subject of discussion is the trape-
zium, is explained by Paramesvara and Nilakantha and the
translation follows their interpretation. Pdrs$ve has to be taken
to mean the parallel sides of the trapezium, though such a
meaning is unusual for it. The patarekhds are the perpendiculars
on the parallel sides from the intersection

D X
¢ c of the diagonals i.e. EF and EG in the
DC
E figure. Then EG-== 'AB—-H_)—C x GF
AB
and EF = Km—x GF and thearea
of the figure = GF x A2B+DE. of
A F B course, this is the usual formula for the
Fig. 1 area of a trapezium.

4.4. Brahmagupta does not give the expression for the area of
a trapezium, but notices some other properties.
afquaagREarfaTraeag §; 98 o |

TUFAY qEgfazeai 9 a5 ) (Br. Sp. Si. XII. 23)
(In quadrilaterals other than Visama the square root of the sum
of the products of the opposite sides is the diagonal. The
square of the diagonal less the square of half the sum of the
base and the face is the altitude.)

According to Prthiidakasvamin, Brahmagupta’s commentator,
avisama includes the square, the rectangle and the isosceles
trapezium  (dvisama-samdna-lamba caturbhuja). The sitra is
worded to be applicable to the most general figure of the three,

b C viz., the isosceles trapezium. Let a,
b, ¢, d be the sides of the isosceles
trapezium ABCD. Let DE be drawn
perpendicular to AB and let BD be
joined. Then BD?=DE?4-BE?

=AD? — AE? 4 BE?

e S S e A

Fig. 2 =bd - ac (sinceb=d)
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(In rectangles and squares, since both the pairs of opposite sides
are equal,! BD2=a? 4 b2)

The expression for the aititude follows directly from the above.
Both the formulae are applicable to all avisama quadrilaterals
except the parallelogram and the rhombus, which incidentally,
are two figures which have failed to engage the attention of
Indian mathematicians to any considerable extent after the Sulba-
satras. Perhaps avisama has to be understood to mean “having
the two diagonals not unequal® also.

In the next verse Brahmagupta shows us how to calculate the
parts of the diagonals cut off by the altitudes from the vertices
of the trapezium and those of the middle altitude cut off by the
diagonals. The calculation is based on pairs of similar triangles
and is applicable to the general quadrilateral as well.

The expression for the circum-radius of an isosceles trapezium
is given in

sfaraqred o Fwi fpomaarasfaww gza . . . .
(XIL. 26)

(The diagonalof an isosceles trapezium (non-scalene) multiplied
by the lateral side and divided by
twice the altitude is its circum-
radius). For, from the triangle
ADBits circum-radius = I}Bﬁi])
and this is the same as the circum-

radius of the trapezium.

Fig. 3

4.5. 1f Brahmagupta’s use of the word avisama for quadrila-\
terals with equal diagonals is vague, Sridhara’s use of the wordi

1pt. Sudhakara Dvivedi in his edition of the Br. Sp. Si. says unde.r this
verse—=The method given by the dcarya gives the diagonal and the altitude
in squares and rectangles. In other cases only approximate values of the
Jiameter and altitude are obtained.” This is nct justified.
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caturasra is still less precise. The first verse in his section on

geometry is :

FrageATaTaT, wefegfa: semra aforag W&Wa o @'g(a:l?ﬁ;nsrzzug

(In a square and a rectangle the product of the base and the
upright becomes the area. In other quadrilaterals it is half the
sum of the base and the face multiplied by the altitudes). Though
the unqualified word caturasra is not restricted to the trapezium
in its sense, all the three examples given by Sridhara under this
siitra are trapezia. The apparent confusion is perhaps the
result of a lax use of language. Later on, when he gives a new
method for calculating the altitude, he uses the word rju-vadana-
caturbahu for the trapezium. (The word actually means a
quadrilateral with straight or parallel face).

This method is :

wEeTagas gEEyfinda wawgs

g, TR e I

-gEe we fae e aegenas wafa o

Hife: ¥ @ agETay Huiyg arvEyE i

(In a trapezium the base diminished by the face will become the
base of a triangle. Its sides will be the flanks of the trapezium.
Such a triangle should be constructed for 'g'ettfng the middle
altitude. Twice the area of this triangle divided by the base will
be the middle altitude. Then that will be the upright side, the
segment of the base will be the horizontal side and the flank side
will be the hypotenuse (in the right-angled triangle).

The method is useful for a non-isosceles trapezium in which
case only the triangle formed according to Sridhara’s direction
will be a scalene triangle. The three sides being known, the area
can be calculated with the help of the formula

A=+/s(s—a) 5—b) G—c)
and thence the altitude and the segments of the base step by
step. This method of finding the altitude is not given by other
mathematicians.

Sridhara’s more elaborate work, the Patiganita might have con-
tained more geometrical knowledge. Its part, edited by Dr.
K.S. Shukla contains an interesting section on Sredhiksetras,
diagrammatical representation of series. As in the Gapita
Kaumudi of Narayana Pandita arithmetic progressions are repre-
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sented by isosceles trapezia, their areas being equal to the sums
of the series. (Patiganita 79-85)

4.6. Mahavira lists five kinds of quadrilaterals.

(1) Sama with all sides equal — the square and the rhombus.

(2) Dvidvisama, with pairs of opposite sides equal — the
rectangle and the parallelogram, though the latter does not get
any notice in Mahavira’s work.

(3) dvisama, with two sides equal — the isosceles trapezium.

(4) Trisama, with three sides equal —the trapezium with three
sides equal and

(5) Visama, with unequal sides, which most frequently, denotes.
the cyclic quadrilateral. Even the trapezium with unequal sides.
does not seem to be included under visama® (probably because
it is not .«cyclic). For giving the usual expression for the area of
a trapezium Mahavira says

AT AT ARIT 0 o |
AT gEaerfa gawaaraEo T faewaged
(G.S.S. VII. 50)

(The square root from four sets of half the sum of the sides res-
pectively diminished by the sides and multiplied together is the
exact area. Or, half the sum of the base and the face multiplied
by the altitude, but not in a visama quadrilateral).? From this.
it is also clear that Mahavira knew that the formula

was applicable to the isoscelestrapezium too, though at the same
time we have to suspect that he did not realise that the second
formula applied to all trapezia, not merely to the isosceles one.

Mahavira has a rule for calculating the base and altitude of
the sections with proportionate areas into which a given isosceles.
trapezium is divided by lines running parallel to its parallel sides.
The computation is based on the proportionality of the sides of
similar triangles.

1Compare Brahmagupta’s use of avisama 1n the sense of a quadrilateral
with equal diagonals. The trapezium with unequal sides has apparently no
place.

2Though Brahmagupta also might have known this he does not give any
sure indication that he did so.
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If A B CDis atrapezium divided into parts with area in the
ratio = by the line E P parallel to A B and if D G, the alti-

tude from D is drawn cutting E P in F and meeting AB in G,
from the similar triangles D E F and
D A G, we have

EF DF
AG DG
i.e. bl;::= g(l: , where a and b are the
face and the base and
b, the intermediate
base.
Fig. 4
or bi’—a?_DF(b,+a) m
b2—a? = DG (b+a) m+n
2_ 32 = L R
orb,>—a min (b2—a?)
orb,2= _m (b*—a?-}-a?

m+n
Then the altitude is easily calculated from the area. This.
solution is given in

guegfr-wrmeEraR - aeEaigan |
AARERAHRATAGANE  A¥F: 9 |
(G.S.S. VII 175})

(The part multiplied by the difference of the squarc of the base
and the face and divided by the sum of the parts is combined
with the square of the face. The square root of this (is the base).
(The area) divided by half the sum of the bottom side and the
face is the perpendicular).

Mabhavira restricts his method to the case where the approxi-
mate area of the trapezium is known though it works equally
well with the exact area.

4.7. Most of the known Jaina semi-religious works of the post-
Christian period, which devote considerable attention to mathe-
matics, belong to a period not far removed from Mahavira’s
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date. Virasena, author of the Dhavala Tikd on the Satkhand-
dgama, lived in the 8th century, being a contemporary of the
Rastrakiita king Jagatungadeva,! predecessor of Nrpatufiga (825
A.D.). The text itself written by Bhiitabali in the first century
A.D. contains some mathematical material, though not much of
geometry; but the commentator adds considerably to this store
of mathematical lore. The extant version of the Tiloyapannatti
(Trilokaprajiiaptiy) seems to be later than Virasena, since it repro-
duces passages from the Dhavald,? but it is earlier than Nemi-
candra of the 10th century a.p. The original text must have
been quite old; but we have no means of separating out the two
strata of mathematical accretions. The first four Mahadhikaras
of this work have a stock of mathematical formulae chiefly con-
nected with the circle, the trapezium and the cylinder ingeo me-
try, and series in algebra. The Jambudvipaprajfiapti-samgraha
of Padmanandin who lived in Bara in Rajasthan, probably about
the close of the 10th century,?® is similarly based on a very an-
cient work, the Jambudvipaprajiiapti# Nemicandra’s (10th
century) Trilokasara and Gommatasira too serve as store-houses
of ancient Jaina mathematical knowledge. Here the Tiloyapannatti
is taken as representative of these texts so far as their geometri-
cal knowledge is concerned.

Besides the usual formula for the area of a trapezium (vetra-
sana-sannibha-ksetra), the Tiloyapannatti calculates correctly the
height of a trapezium at different distances from its lower cor-
ners (I. 180). The principle involved is the proportionality of
the elements of similar triangles.

1Hiralal Jain, ST&4)! WA § q@Aafa afoawededt epa T4 F @
Jain Antiguary, Yol. VII, p. 106 ff. But A.N. Singh in his article on the
<“*Mathematics of the Dhavala” published as an introduction to the fourth
volume of the Satkhandagama ed. by Hiralal Jain and published by the
Jain Sahityoddharaka Fund, Amraoti, places Virasena in the 9th century,
but thinks the mathematics in the Dhavala is at least four centuries older.

2Vide Phul Chand Siddhanta Sastri’s “ggara fasiagoufe ok g@® EATHS
aaifz & fa=re”’ published in the Jain Antiquary, Vol. X., No. 1.

3 Jambudyipaprajfiaptyupangamed. by A.N. Upadhye and Hiralal Jain,
Introduction, p. 14. )

4The Jambudyipaprajiiaptyuparigam published from Bombay does not
contain much mathematical material.
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Using the same principle the Tiloyupannatti calculates the rate
of increase or decrease of the top or base of a trapezium.
sifam g faeifar s=eafed Ao Wi
Y &9 g a7 #% argggroiAy 0
(T.P.1 176)
(s w@ fawieq 9@agd qaTg Wit )
a9y day wedw afggrr u)

(Subtracting the top from the base, the difference is divided by
the height. Thisis the increase and decrease from the top and
the base in all (trapezoidal) figures).

The theorem of the square of the hypotenuse is used to cal-

culate the slanting sides of a trapezium from the known base,
face and altitude.!

4.8. Aryabhata Il who was somewhat baffled by the unprecise
use of language on the part of his predecessors and was bold
enough to voice a protest, criticises Sridhara’s method of cal-
culating the altitude of a trapezium from the triangle formed
with the difference between the parallel sides as base and the
flanks of the trapezium as sides, in the following words.
fam@t enel et spe s FUEY T
grafamisfy @ 7 wiFgar aemed a= o

(Ma. Si. XIV. 80)

(Making the base diminished by the face the base, one calcula-
tes the altitude. This altitude is not (or, is still ?) the same
everywhere. Nor is the base fixed. Hence it is not acceptable to
us.)

This criticism itself baffles us by the difficulty of construing the
verse. Aryabhata seems to have tried the method for quadri-
laterals other than the trapezium and found it unworkable. The
school to which Aryabhata IT and Bhaskara II belonged seem to
have suffered from a lack of continuity of geometrical knowledge,
though, to their credit, it must be said that their approach was
very rational. Hence perhaps Aryabhata’s distinction of not for-
getting the parallelogram (and the rhombus) amongst quadri-
laterals. He has a rule for calculating the second diagonal of
these figures, when one is given.

YJambudvipaprajfiapti 111. 37, T.P. 1. 179.
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FATGLE SHAN aTTHAANIAR |
FEeEEE Fut frda: @ o
(Ma. Si., XIV 81-82)
(In a rhombus and a parallelogram the second diagonal will be
the square root of the sum of the squares of all the sides dimin-
ished by the square of the diagonal.)
For if in the parallelogram A B C D the altitudes CE and DF
are drawn and the diagonals A C, B D are joined
AC?= AE2--CE?
=(AB+BE)?+BC?
—_BE?

BD2-- BF24-DF?
= (AB—BE)?+BC2?
_BEZ
~.AC*+BD?=(AB-+BE)?
4 +(AB—BE)?
Fig. 5 +2 BC2—2BE?
=2 AB2?+2 BE?42BC?
' —2BE?

=2AB?*+2 BC?
.. AC2=2 AB?+2 BC?—BD2if BD is given
and BD2=2 AB?2 BC2—AC2if AC is given
The area of a rhombus is given as half the product of the
diagonals.
syferama: gREgRE wlaa: & S
(Ma. Si. XIV. 82)
(In an equal quadrilateral (square or rhombus) the product of
the diagonals when halved, will be the area.)
By implication Aryabhata had the knowledge that the diago-
nals of a rhombus intersect each other at right angles.

4.9. Sripati gives the formula for the area of the trapezium as
also the method of calculating the circum-radius of an isosceles
trapezium without, however, making it clear that a circum-circle
is not possible for the non isosceles trapezium.
S e fauT FaTgane Wi @ aEEARY |
sgeaaner: wfaarganr (=g ?) FwgEe gd & @

(Si. Se. p. 86)
{In a quadrilateral (isosceles trapezium) half the product of a
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given diagonal and the side adjacent to it divided by the altitude
(is the circum-radius). In quadrilaterals with unequal sides it is
half the square root of the sum of the squares of the opposite
sides). Brahmagupta’s expression for the diagonals of an avisama
quadrilateral is also -given, agsfFaTgadFIE (the square root
of the sum of the products of the opposite sides). That is, ifa, b,
¢, d are the sides of the avisama,

its diagonal = 4/ac+bd’

Bhaskara II restricts Aryabhata’s (IT) expression for the dia-
gonal of a parallelogram in terms of the other diagonal and the
sides to the quadrilateral with all the sides equali.e. to the square
and the rhombus.

T2 N fargeaagy = FHAy agitaatear av |
g o angEfaerdd g s ()

(Lil. 172)
(One diagonal of a quadrilateral with equal sides should be chosen as
known. The square root of four times the square of the side decreased
by the square of that (diagonal) is then the measure of the second
diagonal.)

One definite improvement in the terminology used by Bhaskara
is that he has a definitive name for the trapezium viz. samalamba-
caturbhuja a quadrilateral with constant altitude. The formula
for its area is the usual one. For the demonstration of its validity
in the case of a non-isosceles trapezium, Bhaskara recommends
division into three parts along the altitudes from the two corners
with the least perpendicular distance between them, when the
middle segment will be a rectangle and the other two segments
will be unequal right triangles, all the three having the same
upright side. The areas are calculated separately and added
up to show that the total tallies with the area as calculated with
the help of the formula, A=} the sum of the base and face
multiplied by the altitude. The demonstration is purely empirical.
4.10. Unlike Aryabhata 1I, Bhaskara sees the usefulness of the
device of forming a triangle with base equal to the difference of
the parallel sides and sides equal to the flanks of a trapezium for
finding its altitude and abadhas.
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A =g e qEA afcwe wfa
Y S AR qIEA AT FEAHRIEaeT ()

(Lil. 184)
(Taking the base of the trapezium diminished by its face as the
base and its flank sides as the sides, its (of the triangle so formed)
abadhds are to be computed as in (other) triangles and then the
measure of the altitude from that.)

Though Bhiaskara has already given Aryabhata’s condition for
any four lengths to enclose a space, he investigates the possibi-
lity of their forming a trapezium and gives the condition
TR AR gE R fa T g

(Lil. 185)
(In a trapezium the sum of the other flank side and the face is
smaller than the sum of the smaller flank side and the base).
Ganesa (16th century) attempts a proof for this by logical rea-
soning.! But the reasoning itself is confused.

4.11. Narayana Pandita gives the rules for the calculation of the
area, the altitude, the diagonal and the @bddhas in a trapezium.
Mahavira’s method for dividing a trapezium into sections with
areas in a given proportion by lines parallel to the parallel sides
occurs (in G. K. Ksetravyavahara iii), besides a rule for calculat-
ing the middle bases (madhyabhiimi) when a trapezium is divided
into any number of parts by lines parallel to the parallel sides
at regular intervals from the base (G.K., Ks. Vya. 21). As in
Sridhara’s Patiganita, trapezia are used to represent arithmetic
progressions. These may have negative bases or faces and then
the flanks cross over each other. In the Ganita Kaumdi such
trapezia also occur in connection with the construction of
rational trapezia with base and diagonals equal® to one another
and of rational trapezia with a given area.® Nardyana and
Sridhara are the only two amongst known authors in whose
works such trapezia make their appearance and the question of
the source of this new concept is intriguing.

The later Aryabhata School does not pay much attention to
the trapezium.

1ril., p. 175.
2Notes under verses G.K., Ks. Vya, 88-90.
3Notes under verses G.X., Ks. Vya, 108-09.



CHAPTER V

THE QUADRILATERAL

5.1. Two sections of Indian mathematicians have approached the
study of the quadrilateral from two different angles. One section
viewed it merely as a figure enclosed by four chords of a circle,
whereas the other viewed it as a figure enclosed by any four lines
i. e. the general quadrilateral but, strangely enough, excluding
the cyclic quadrilateral. The former includes the majority of
Indian mathematicians, Brahmagupta, Sridhara, Mahavira,
Sripati and the later Aryabhata School; the latter Aryabhta II
and Bhaskara II. We do not know to which camp Aryabhata I
belonged, since his extant works accord the quadrilateral a
doubtful passing notice only, but it is likely he belonged to the
first camp. Narayana Pandita has leanings towards both. He
sympathises with Aryabhata II’s criticism of Brahmagupta’s
theorem for the area of a quadrilateral, evidently because he is
not aware that Brahmagupta meant it to be of restricted applic-
ability only. But at the same time he deals with the cyclic
quadrilateral too and has discovered some of its properties
which apparently Brahmagupta did not know, but were common
knowledge in the later Aryabhata School.

5.2. Some of the rules of calculation given by Brahmagupta and
his followers, though primarily intended for the cyclic quadri-
lateral, are applicable to the general quadrilateral as well. Such are
() faaragodaasy faoafaqsed soea 99% )

FUGAT QAT THEFT F 997 0 (Br. Sp. Si. X1L 29)

C (Making two scalene triangles
oz in a scalene quadrilateral sepa-
ot rately with the two diagonals,
one should calculate the aiti-
tudes and abadhas as before)
| i.e. by considering the triangles
i A B C and ADB (Fig. 1.)CF,
E F B BF and DE, A E can be
Fig. 1 calculated.
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2. faumqwrafeqd gFea Ful g4 qararg |
qIEATA@IE FUTAT FUFREL
fawst wat g yfaeaeesr araseR g |
FEANITAFES AL ERGATH |
(Br. Sp. Si. XII, 30-31)

(In the triangles inside a scalene quadrilateral consider the diago-
nals as the bases and (calculate) the abadhas which are the upper
and lower parts of the (diagonals?) separately. In the triangle
beneath the intersection of the diagonals, the lower parts of the
diagonals are the sides and the base of the quadrilateral is the
base. Its altitude will be the lower segment of the altitude (of
the quadrilateral) through the point of intersection of the diago-
nals and the upper segment will be half the sum of the two (side)
altitudes diminished by the lower segment.)

The wording of the first verse is vague and we do not know
whether the @badhds themselves are the upper and lower seg-
ments of the diagonals (--this is the interpretation accepted by
8. Dvivedi, the editor of the Br. Sp. Si.), in which case the rule

will apply to one particular type of the cyclic quadrilateral only,
viz. the one in which the diagonals cut at right angles.

5.3. Sicikgsetras

In connection with the quadrilateral, most Indian texts speak”
about a siic7 i.e. the triangle formed by producing the flanks till they
mect. Brahmagupta shows how to calculate the segments of the
altitude of such a triangle and the segments of the diagonals of the
quadrilateral produced by their point of intersection—

HulaamEFd! @98 FNITTERERER |
AT qGH Fed geAT qUTETAT |

(Br. Sp. Si. XI1I. 32)
(In the siici,! the lower segments of the diagonal and the altitude
made by their intersection can be got by proportion. Then the
upper segments are (the whole diagonal and altitude) diminished
by these (lower segments).

11 have left the word sapataydam untranslated. Even if pgta means the same
as the pitha of Bhaskara II and Narayana, as S. Dvivedi says it does, I do
not see the relevance of the word in the context.
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In the figure, E A B is the
sigci of the quadrilateral
A BCD. E F is the altitude
(sicilamba as it is often
called) which intersects the
diagonals A C and BD at
P and Q respectively. The
verse indicates the method L &
for calculating E P, P F and

EQ QFasalso PA,PC D
and Q B, QD. If DG and P
C H the altitudes at D and

and C are drawn, we get R Q
two sets of similar triangles

CAH,PAFand DBG, © G N F H B
QB F from which PF, QF Fig. 2 '
and P A, Q B can be calcu-

lated.

Bhaskara devotes six verses to a consideration of the
sticiksetra giving (1) expressions for calculating R G, R A and
S H, SB (fig. 2) in terms of the sandhis A G and H B (the sandhi
is the projection of the side on the base), the pithas G B and
AH (the pithas are the portions of the base after the sandhi) and
the end altitudes C H and D G (Lil. 193-194 and Vasana thereon)
(2) expressions for calculating the vamsas, AL and B K (vamsas
are the uprights at A and B metting the diagonals produced at L
and K) in terms of the end altitudes, the base and the pithas
(Lil. 195), (3) a direction for calculating the altitude from the
point of intersection of the diagonals M, and the segments of the
base AN, B N made by it in terms of the vamsas and lambas
(Lil. 195) (4) expressions for calculating the abadhas of the sici,
A F and B F; the sicilamba E F; and the sides of the siici E A
and E B (Lil. 196-198).1 '

1Here Bhaskara introduces certain new technical terms like sama (the
sandhi divided by its altitude and multiplied, by the other) for mere facility
of expression. This sama combined with the opposite sandhi is called hara
(the divisor) but this is because this quantity appears as the divisor in the
expressions to follow.



84 Geometry in Ancient and Medieval India

All these expressions are derived from appropriate sets of
similar triangles.

Narayana Pandita repeats all Bhaskara’s calculations swell-

< ' ing their bulk at the same time by an-

Y other but exactly similar calculation.
The altitudes at the ends viz. D G and
C H are produced to meet the opposite
sides produced at X and Y and expres-
sions are derived for the lengths of
GX,HY and BX,AY. (G.X Ks.
D C Vya. 58-59).

A G H B

Fig. 3
The concept of siiciksetras perhaps first arose in connection
with problems of excavation, it being often necessary to take in-
to account the volume of a pit or a tank if it were to taper to a
point, before the actual volume of the excavation could be cal-
culated and a pit or a tank generally has a trapezium as cross
section. Later on perhaps the field of siiciksetras was extended

to cover irregular quadrilaterals.

5.4. Noncyclic quadrilaterals

Amongst the known Indian mathematicians Aryabhata 1I was
the first to question the validity of Brahmagupta’s expression for
the area of a (cyclic) quadrilateral. Perhaps due to a lack of co-
ordination of mathematical knowledge in the different schools,
the true significance of the theorem failed to be grasped by
Aryabhata 11 and by Bhaskara II following him closely. Though
this was regrettable in itself, it had a salutary effect also, in that
it led to a consideration of the general quadrilateral, which had
been hitherto left untouched.

5.4.1. Aryabhata Il gives a formula for the approximate area of
a quadrilateral after giving a general formula for the exact area

of a trapezium, triangle, square and rectangle.
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favsragy IR
aEAfafeimed Frgd STy afa |
faus guageasdad a1 suasiy |
% mes 7 famfpywegalgds s 4 g
FrEraETaRETE a1 (F--u) dndgarfed free o
(Ma. Si. XIV. 78-79)

(For calculating the area of a triangle and a quadrilateral—
Half the sum of the face and base multiplied by the altitude is
the area in a triangle, a square, a half equal quadrilateral (one
with two sides equal i.e. the rectangle and isosceles trapezium)
and also when the diagonals differ (i.e. in a trapezium with un-
equal diagonals). This never gives the area of a srigataka' nor
that of most visama quadrilaterals. Half the sum of the south-
ern and northern altitudes multiplied by half the sum of the base
and face is the approximate area (in these).

The last of these rules is the easy method of multiplying the
mean altitude by the mean base. For the exact area, the areas
of the triangles into which a diagonal cuts a quadrilateral, are
to be computed separately and added.

sy saaaTgaag i |
qaegwar: FOT 5 wrfa’ yerem a@n )
(Ma. Si. XIV. 68)

(In that (visama) quadrilateral, the area is the sum of the areas
of the two triangles in it. Their base is the diagonal and the
other sides are the four sides of the quadrilateral).

5.4.2. For calculating the diagonals, the altitudes at the ends
of the diagonals are used, when the calculation reduces to a

IWhat exactly is meant by ¢rrigdtaka ? Monier Williams in his Sanskriz-
English Dictionary gives one geometrical meaning only for the word and
that is triangle. Sometimes it is used in the sense of a tetrahedron. But here
it does not seem to denote either. In XIV. 75. Aryabhata speaks of a
Srngatakacaturasra also.
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c straight-forward application of
D the theorem of the square of the
diagonal.® For, the projection
A E —+y/AD"_DE?
and then
B D' —+/BE2+-DE?
B =4/(AB—AE)?-+DE?
Fig. 4 (BE: -AB--AE, if the altitude
falls outside the quadrilateral).
For finding the second diagonal when the first is given

&)

TSEHEs agyt afrea fasereway: |
AEITIET: ST T FUFHARGIET |
& TR AN |
qe frfaastvagrent o a9
(Ma. Si. XIV. 86-87)

(Making the given diagonal the base in both the triangles
(formed by it in the quadrilateral) the altitudes and abadhds are
to be calculated. The abadhas are to be placed in sets touching
the bottom and top ends of the diagonal. The square root of
the square of the difference between (corresponding) abadhas
in the two triangles combined with the square of the sum of
the altitudes gives the second diagonal in all quadrilaterals).

The necessary lines are shown
in the figure (fig. 5). If the alti-
tude DF is producedand B B’ is.
drawn perpendicular toit fromB

BB =GF _
:= AG — AF
and FB’ == BG.

.. From right angled triangle
DB’'B BD2=RB'D?--BB’?
=(DF+BG)?*+(AG—AF)?

Fig. §

1Ma Si. X1V, 83-85.
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5.4.3. Bhaskara II repeats all these expressions! except that for
the approximate area. In addition, he investigates the condi-
tion that has to be satisfied by the diagonals of a quadrilateral.
FOUHHTETT - AT TG ToSTHAT F q7g |
ATENSAATEIST FAFAH: et Fufaseaay 7 9 1
AEITIATA AEAUS ATCASTH: GIaar gF&T; |1
(Lil. 182)
(With the smaller of the sums of the sides about the diagonal as
base and the other sides as sides the altitude is to be calculated,
similarly the other diagonal. The other diagonal cannot in any
case be longer than its base (i.e. the base of the triangle formed
asabove), nor can the first be shorter than its altitude...... )
The process of arriving at these conditions is explained by
Bhaskara himself. If the quadrilateral is pressed diagonally, at
the extreme position, the two sides at one end of the diagonal
coincide with the other diagonal. Hence the two conditions.
All these new rules are prefaced by Aryabhata with a vehe-
ment attack on earlier mathematicians.
FUATAA fGAT I TvEE B TS |
axg Fiefq Tus @iset q@: far=t ar o
(Ma. Si. XIV. 70)

(The mathematician who wants to find the altitude or area of a
quadrilateral without knowing (the length) of a diagonal is a
fool or a devil).

Aryabhata had discovered that the quadrilateral, unlike the
triangle, is not determined by the sides only. But we do not
know whether he was aware that any five elements, not neces-
sarily including a diagonal, will determine a quadrilateral. Any-
way, Bhaskara who says
Al FORESA I T )
geeafraaasfy frag Tify aewe |

¥ q=o%: famray ar a9ar ar faasi @@
(Vasand under Lil. 17)

(Without specifying one of the altitudes or diagonals how can
any one ask for its determinate area, when it is indeterminate?

1Li1. 179-81.
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The one who asks and the one who replies are fools or devils...),
certainly knew this. Again Aryabhata rejects without any com-
punction Brahmagupta’s formula for the area of the cyclic
quadrilateral, whereas Bhaskara gives it with the qualification
“oregEnd wq o (this is the approximate area in quadrilaterals).

Narayana Pandita follows Bhaskara closely in his treat-
ment of the quadrilateral, though he does not condemn Brahma-
gupta’s theorem for the diagonals of a cyclic quadrilateral,
which he repeats without Bhéskara’s apology; but still he does
not say specifically that the theorem is true in its sphere, i.e. for
the cyclic quadrilateral. He notes that the area calculated with
the formula A =4/(s—a) (s—b) (s—c) (s—d) is not exact in
some quadrilaterals but fails to define these.

5.5. The cyclic quadrilateral

In fact Brahmagupta’s theorem about the cyclic quadrilateral
must have been a hard nut to crack for quite a few earlier
Indian mathematicians, Consequently the cyclic quadrilateral
has had a chequered history in India.

5.5.1. Brahmagupta’s most important contributions to the
geometry of the cyclic quadrilateral are the two theorems

tqeree farags sEmgfaargaaeemE: |
AT T AgseAsSHTard ©€ &9 |
(Br. Sp. Si. XII. 21)

(The gross area of a triangle or a quadrilateral is the product of
half the sums of the opposite sides; the exact area is the square
root of the product of four sets of half the sum of the sides
(respectively) diminished by the sides)

and
Futf Ay IS o ¢
AT yewfmEy: st w faed
' i (Br. Sp. Si. XI1. 28)
(The sums of the products of the sides about the diagonal
should be divided by each other and multiplied by the sum of

the products of the opposite sides. The square roots of the
quotients are the diagonals in a visama quadrilateral).
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The first verse embodies the formula for the area of a cyclic
quadrilateral
A=/ (s—a) (s—b) (s—c) (s—d)
and the one for the area of a triangle
A=4/s (s—a) (s—b) (s—c)

The one for the triangle is found earlier inthe Metrica of
Heron of Alexandria (between 2nd century s.c. and 3rd cen-
tury A.p.). Still the case for borrowing by Brahmagupta is very
weak. In India the result was derived for the quadrilateral first
and then extended to cover the triangle or rather the triangle
was stretched into a quadrilateral to bring it within the purview
of the formula. Secondly and consequently, Brahmagupta’s
mode of derivation of the formula is entirely different from the
Greek mode, if the derivation and proof given by the Arya-
bhata School gives a clue to his procedure! (this proof will be
dealt with later).

The second verse quoted above contains the theorem about
the diagonals of a cyclic quadrilateral, now generally known as
Brahmagupta’s theorem, and rediscovered? in Europe in 1619
A.p. by W. Snell.

If a, b, ¢, d are the lengths of the sides of a cyclic quadrilateral
and x and y are its diagonals,

the theorem states x — (@b +cd)(ac + bd)
ad +— be
and y=v (ad +~bc)(ac + bd)
ab + cd

thus enabling the diagonals to be caiculated in terms of the
sides.

1In spite of the apparent rivalry between Aryabhata 1 and Brahmagupta,
the Ilatter’s theorems and results are preserved and developed in the Arya-
bhata School. One has sometimes a suspicion that these formulae had been
current. knowledge in Aryabhata’s school even before Brahmagupta. Like
Bbaskara not understanding and criticising some of Brahmagupta’s results
but at the same time accepting the bulk of the latter’s mathematics,
Brahmagupta too, probably drew on Aryabhata I's mathematics largely,
adding his criticism wherever he thought it necessary.

2D.E. Smith-History of Mathematics, Vol. I{ p. 286.
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5.5.2. A third significant contribution by Brahmagupta to the
study of the cyclic quadrilateral is his method for getting a
rational cyclic quadrilateral, which is to multiply the sides of two
rational right triangles by each other’s hypotenuse and use these
sides as the sides of the quadrilateral. What Brahmagupta ob-
viously does here is to get two pairs of sides, such that the sum
of the squares of the sides in one pair is equal to the sum of the
squares of the sides in the other. And hence his formula for the
circum-radius of a quadrilateral, which is meant to cover such
quadrilaterals only.

&< fawwer gawfagss favrgamag n
(Br. Sp. Si. XII. 26)

(The circum-radius of a visama quadrilateral is half the square
root of the sum of the squares of opposite sides).

Since Brahmagupta, like all other Indian acaryas of yore, has
left out the logic and the rationales of the results garnered in
his work, the interpretation of this line was a challenge for some
time. (Narayana Pandita of the 14th century criticises the rule
saying it does not cover all cyclic quadrilaterals (G. K. Part 11
p. 175). Sudhakara Dvivedi, editor of the Brahmasphutasiddh-
antq, commenting on it, says that ‘according to Brahmagupta
the circum-radius could be known only in the case of a cyclic
quadrilateral in which the arcs on the opposite sides added up
to the semicircumference”. But actually the scope of the formula
is a bit wider. An anonymous commentator of Narayana’s
Tantrasara® gives a clue for the correct appreciation of Brahma-
gupta’s rule. According to him one method of forming Brahma-
gupta’s rational cyclic quadrilateral is to juxtapose two rational
right triangles having the same hypotenuse, with their hypotenu-

1pp. 265-66 in the transcript of a grantha belonging to Desamangalath
Nampitiripad and containing the text of the Tantrasargraha with a Mala-
yalam commentary and a Malayalam commentary on the third and fourth
chapters of another astronomical text, the Tantrasira composed by Nara-
yana of Perumanagrima. In between the two thereis a section which deals
with diverse mathematical topics and quotes from the Lildvati often and
from the Yuktibhasa (p. 268). This explanation of the formation
of the rational cyclic quadrilateral occurs in this portion. The transcript
used by me belongs to Sri Rama Varma (Maru) Thampuran, Siva-
padam, Marar Road, Trichur.
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ses coinciding. Then that hypotenuse will be a diagonal of the
quadrilateral as also a diameter of the escribed circle. By inter-
changing the sides, which are chords, other cyclic quadrila-
terals are obtained. But, in all these, either the diagonals will
cut at right angles or else one of the diagonals will be a dia-
meter of the escribed circle. Moreover, in these quadrilaterals
the sum of the squares of the largest and least sides will be equal
to the sum of the squares of the remaining sides.

Brahmgupta’s direction for forming the rational quadrilate-
ral is
FTAFAFIETST: GIFUAT: AT ITH |
wfawr yra gAY agfgad gama=at

(Br. Sp. Si. XII. 38)

(The kotis and bhujas of two jatyas multiplied by each other’s
hypotenuse are the four sides in a visama quadrilateral. The
longest is the base, the least the face and the remaining two
sides the flanks).
Hence his formula for the circum-radius is valid if the diagonals
cut at right angles. It can be extended to the second case of the
diagonal coinciding with the diameter of the circle by taking
half the square root of the sum of the squares of the longest
and shortest sides.

Speaking about Brahmauagupta’s gepmetry Cajori says!
“Remarkable is Brahmagupta’s theorem on cyclic quadrilaterals
(ad 4+ bc) (ac +- bd)

2=
X ab 4+ ¢od
o (ab 4 cd) (ac + bd)
and y2= ad T be where x, y are the

diagonals and a, b, ¢, d the lengths of the sjdes; also the the-
orem, that if a2 4 b= c2, and A% 4 B?= }2, then the quadri-
lateral (Brahmagupta’s quadrilateral) aC, cB, bC, cA is cyclic
and has its diagonals at right angles”. Actually the significance
of the latter theorem is wider, any quadrilateral whose sides are
aC, bC, Ac, Bc taken in any order being cyclic. Its diagonals cut
at right angles if the greatest and least sides are placed opposite
to each other. Moreover, if the diagonals do not cut at right

14 History of Mathematics, New York, 1919, p. 87.
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angles, one of them equal to ¢cC will pass through the centre of
" the escribed circle. Thus the circum-diameter of such quadri-

lateral is easily known. The formula for the circum-diameter

of the general cyclic quadrilateral is the same as the one for the

circum-diameter of the triangle formed by joining a diagonal.

fagaey 3 WAy @ ggaws |

a1 fepo faagy sERgEatase: |

LN

(Br. Sp. Si. X1II. 27)

(The product of the two sides other than the base divided by
twice the altitude is the circum-radius of a triangle. Twice that
is the diameter of the escribed circle of the triangle and the
«quadrilateral). Again Brahmagupta fails to specify that the
triangle is the triangle formed by joining the diagonal of a cyclic
quadrilateral.

Brahmagupta’s treatment of the quadrilateral is limited to
the cyclic quadrilateral. In fact all his geometry is concerned
with figures inscribable in circles, as a survey of his section on
Ksetraganita will convince anybody.! This fact was perhaps
vaguely realised by Sridhara and Mahavira and more clearly by
Sripati, but Aryabhata Il and Bhaskara II seem to have missed
the significance of Brahmagupta’s theorems completely.

5.5.3. Sridhara gives the formula A =/ (s—a) (s—b) (s—-¢) (s—d)
for the area of a quadrilateral without leaving any satisfactory
clue to enable us to know whether he realised the limitation in
its applicability. Even the expression for the area of a trape-
zium (T.S. 42) is given as the formula for the area of the gene-
ral quadrilateral. Mahavira, on the other hand, notes that this
expression is not applicable to the visama caturasra (G. S. S. VIIL
50), which makes it probable that he was aware of the restric-
tion in the formula A=~4/(s—a) (s—b) (s—c) (s—d) as well.
(It is note-worthy that the examples appended to his sitra
embodying this formula, as applicable to the cyclic quadrilateral
- and the triangle (G.S.S. VIL. 50), all refer totriangles only, not to

This aspect of Brahmagupta’'s geometry has been dealt with by the writer in a
paper on “The Cyclic Quadrilateral in Indian Mathematics” presented at the 2lst
session of the All India Oriental Conference, 1961.
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quadrilaterals). Brahmagupta’s expression for the diagonals of
a cyclic quadrilateral is repeated in

fafrgat fardaast garmasfafsat sest |
exot gfawemEt: dag: o wt

(G. S. S. VIL. 54)
(The flanks multiplied by the base and respectively combined
with the opposite flank sides as multiplied by the face are the
multiplier and divisor and the divisor and multiplier (respect-
ively) of the sum of the products of the opposite sides. The
roots of the quantities so obtained will be the diagonals).

Here too, the stanza does not make it clear that it refers to
cyclic quadrilaterals only. The last example occuring under this
sutra and intended to cover the case of the visama quadrilateral
gives 195, 260, 125 and 300 for the four sides, i.e. the tradi-
tional 39, 52, 25 and 60 of the Brahmagupta quadrilateral multi-
plied by 5. The treatment of the rational cyclic quadrilateral
also follows Brahmagupta’s. The area of such quadrilaterals is
half the product of the diagonals ®& sfaomdsn (G.S.S. VIIL
1074) since the diagonals cut at right angles.

Mahavira’s formula for the circum-diameter of a cyclic
quadrilateral is neither of restricted application nor vague like
Brahmagupta’s.

] fO TR TE A erEAT 9ge o fAs
VST FFEgal wagateg afaseea |
(G.S.S. VIL 213)

(The diagonal divided by the altitude and multiplied by the
flank is the diameter of the escribed circle in the case of a qua-
drilateral; that of the triangle is the product of the two sides
divided by the altitude.)

Brahmagupta gives this formula for the circum-radius of a
trapezium, though it is capable of being applied to any cyclic
quadrilateral.

5.5.4. Aryabhata II does not seem to be aware of the exis-
tence of cyclic quadrilaterals at all. He has no expression for
the circum-radius of a triangle or a trapezium, not to speak of a
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visama quadrilateral. He accepts Brahmagupta’s formula for
the area of a triangle, but rejects the corresponding one for
the quadrilateral. His break with the circle tradition in the
geometry of rectilinear figures is absolute.

5.5.5. But Sripati, between the non-conformists Aryabhata II
and Bhaskara 11, is a follower of the circle tradition. For him
Brahmagupta’s formula for the area viz.

A=14/(s—a) (s—b) (s—c) (5—d)
gives the correct area in quadrilaterals as well as triangles!
and he calculates the circum-radius of quadrilaterals,
g S fATeAaIgaae g @] AW |
AeAaTEY: SfqEgaTT (A1g ?) Fw-geEa &« g aw (Si. Se. p. 86)
(In a quadrilateral, half the product of any given diagonal and
the flank at its side divided by the altitude is the circum-radius
(hrdayarajju). 1In quadrilaterals with unequal sides it can, alter-
natively, be half the square root of the sum of the squares of
opposite sides).

For forming the rational cyclic quadrilateral, ‘Sripati’, like
Brahmagupta, directs that the longest side shall be the base and
the shortest the face. Hence the alternative formula.

For the diagonal of a cyclic quadrilateral, he gives Brahma-
gupta’s formula?, Like Brahmagupta again he ignores non-
cyclic quadrilaterals.

5.5.6. Bhaskara II, as already mentioned, seems to be
guided solely by Aryabhata II in his treatment of Brahma-
gupta’s theorems and results for the cyclic quadrilateral. But
he does not cut himself away from them entirely. He repro-
duces Brahmagupta’s theorem for the area of a quadrilateral,
adding that the area so obtained will be gross.3 The theorem

16i. Se., p. 85.

2$i, Se. p. 86.

31t is interesting that the Aryabhata School, which was equally devoted to
Bhaskara, reads this verse (Lil. 169) with an emendation as

wAfdce =g frerd agfufifed 9 wgur
TR gl v S o A (Y.B. p. 257)
The latter half in the published texts of the Lilavati has HANTGETA

i’g_‘{ﬁ Wﬂ’ﬂ'ﬂ;fiﬂ ﬁi‘iﬂﬁi‘? Brahmagupta’s quadrilaterals are niyatasruti
(with determinate diagonals) because all the possible arrangements of the
sides can have only three calculable diagonal-lengths,
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about the diagonals also finds a place, though he is at pains to
show that the diagonals of a quadrilateral whose four sides only
are given are not determinate. Another criticism he has to
make is that the calculation is unnecessarily complicated, when
the diagonals can be more easily got from Brahmagupta’s own
method for forming the rational quadrilateral.

wHISAAETaTEH E: TTeIY Fuigar o 3fa
agy st afged swferd » fovg oo fasgsearsa:
a1g Wa: Ffeadq ax endw o fa: Sfoqsnadeny )
s @) wealy argdsfen qF: g ag e @ fam
(Lil. 189-90)

(In the quadrilateral formed according to the rule abhistajatya-
dvaya...... > the diagonals can be got from the triangles them-
selves. The product of the bhujas combined with the product of
the kotis will be one diagonaland the other will be the sum of the
reciprocal products of the bhujas and kotis). When this easy
method is available, I do not know why the earlier mathemati-
cians should have adopted a more difficult method i.e. if a, b, c;
X, ¥, z are the two jatyas (right triangles of reference) from which
the Brahmagupta quadrilateral is formed, the diagonals will be
ax+by and ay-bx. This is indeed an easier method for finding
the mutually perpendicular diagonals of the Brahmagupta qua-
drilateral. But it is only in positions where the longest and
shortest side face each other that the diagonals will be mutually

perpendicular. For the other positions Bhaskara has a supple-
ment in his notes

3 IR vyeEd): e Fa W 49 9 Sagasay: i |

(df a flank and the face are interchanged, the product of the
hypotenuses of the two jatyas is the second diagonal). Thus
Bhaskara’s method is easier in the case of quadrilaterals formed
from known jaryas! But Brahmagupta’s rule enables us to
calculatethe diagonals of any cyclic quadrilateral. This Bhaskara

1H.C. Bannerji in his notes on *‘Colebrooke’s translation of the Lilavati®
remarks that Ganesa points out as a fault that Bhaskara’s rule requires saga-
<ity in selecting the jaryas. What Ganesa actually does is to defend Bhaskara
saying that Brahmagupta’s rule also is meant for such quadrilaterals only,
(See Lil. p. 183).
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did not realise nor did he realise the cyclic character of
Brahmagupta’s quadrilateral, which no serious student can easily
miss. He ignores the calculations of the circum-radius under-
taken by his predecessors.

5.5.7a. Narayanpa Pandita takes the study of the cyclic quadri-
lateral much farther than Brahmagupta. In fact, though we have
not as yet, any clear evidence that he belonged to the Aryabhata
School, the advancesin circle geometry (and series mathematics)
achieved in this school seem to be foreshadowed by the Ganita
Kaumudi. The theorem of the three diagonals is the most im-
portant of these.

geagaigt qaw afkady a3 fafgy
FUEART g 9T &fT woied wAfa o

(G. K. Ks. Vya. 48)
(When the top side and the flank side of any four-sided figure
are interchanged, we get a third diagonal called para. Thus there
are three diagonals).

In a square and a trapezium with three sides equal these three
diagonals are equal. In the isosceles trapezium and the rectangle,
two diagonals are equal. The half verse dealing with the
diagonals of a visama quadrilateral i.e. #viad g @ fauw 7 agq 3
faaasy | seems to be corrupt. The discovery of other manuscripts
may help to fix the reading. But it is obvious this interchange
of sides without changing the area is possible only in the
cyclic quadrilateral, not the general quadrilateral. Hence the
statement is equivalent to : three and only three diagonals
are possible for four side-lengths of a cyclic quadrilateral.?

5.5.7.b The area of a cyclic quadrilateral is then given in
terms of these three diagonals.
feroreama favsy fasviamisaar afres |

(G. K. Ks. Vya. 52)

Or, when the product of the three diagonals is divided by
twice the circum-diameter, we get the area)

1G.K. Ks. Vya. 50.
2Bhaskara II also seems to have been aware of this fact vaguely.
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For, the area of the quadrilateral
ABCD=AACD + AACB
AC. AD.CD  AC.BC. AB
- 4r 41
(Whether r is the circum-radius)

- AC .(®C.AD + DC'. AB)

(Where C’ is the vertex got by in-
terchanging the sides DC and

Fig. 6 BC)

Now, by Ptolemy’s theorem, the sum of the products of
the opposite sides of a cyclic quadrilateral =the product of
its diagonals.

Hence BC’. AD + DC'. AB==AC'. BD

.".Quadrilateral AB CD =£_%%ED

_AC. AC’. BD

T 2.d
Ptolemy’s theorem, a knowledge of which is necessary for this
derivation, was first proved in India, according to G.R. Kaye!
by Brahmagupta’s commentator Prthiidakasvamin. The Arya-
bhata school also has preserved a proof.

Two more expressions are given for the area of a cyclic qua-
drilateral. The first is

surifrassEagfaniny a(sa? )fenq sawnfa fawar

IEARAT femarfzagy s afoaw 0
(G. K. Ks. Vya., 134)

(When the diagonal is multiplied by the sum of the products of
the sides about the other diagonal and divided by four times
the circum-radius, that will be the area of isosceles trapezia and
other (cyclic quadrilaterals.)

Yndian Mathematics (1915), p. 22.
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i.e. the area A of the cyclic qua-
drilateral ABCD (fig. 7)
_AC(AD.DC+BC.AB)
4r
(where r is the circum-radius or
_BD (AD. AB4BC.DC)
4r
For, the area of the quadrilateral
ABCD = AADC + AABC
AC AC
- =, 2~ . BK
Fig. 7 2 DL+ 2
_AC_ADDC_AC ABBC
T2 2r 2 2r
_AC (AD.DC+AB.BC)
= . .

5.5-7¢. A minor result about quadrilaterals having equal areas,
circum-radii and diagonals is that, if the sides of the first quadri-
lateral are known, the sides of the second are given by the square
roots of the differences between the squares of twice the radius
and the squares of the sides of the first quadrilateral taken one
by one (G. K. Ks. Vya. 135), i.e. ifa, b, ¢, d, r arethe sides and
circum-radius of the first quadri-
lateral, the sides of the second are
VA a2, 4/4r—b?, /A<t
and /4 r*—dz (for, if the circum-
centre O is joined to the vertices of
the quadrilateral, the quadrilateral is
divided into 4 isosceles triangles and
the altitudes of these triangles are-

\/4r2—a2 -\/4r2—b2 , \/41.2_0:,
4 4 4

Fig. 8 Vg

Any other quadrilateral in the same circle with tl.le same area
can only have these altitudes and half bases interchanged.
Hence the result.)
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5574 Narayana gives various expressions for the circum-
radius, abadhas etc.
(1) The circum-radius?
-3 /\/ product of diagonals x product of flanks
<

product of altitudes
(For, from AADB,

P — r—AD.BD
2p,
From A ACB
Ps AC. BC
Ir=
2D
.., AD.BD.AC.BC
1.C.I¢=
\ 4p,.p:
A B l_=_%A/AC.BD.AD.BC
' Pi1- P2
Fig. 9
N . the product of the 3 diagonals
(2) The circum-radjus?= TA

where A is the area of the quadrilateral. This is the converse of
the expression for the area.
(3) “The segments of the diagonal are respectively the products
of the sides about the diagonal as divided by their sum and
multiplied by the other (?) diagonal” G.KX., Ks. Vya., 138)3
i.e. AE (Fig. 10)
_AD.AB. AC
~AD.AB+BC.CD
BC.CD.AC
AD.AB+BC.CD
_AB.BC.BD
"~ AB.BC+AD . CD
AD.CD .BD
AB. BC4+AD . CD.

C

D and CE=

BE

and DE=

A B

Figs 10

1G.K., Ks. Vya., 138.

2Jbid. 138}.
3The word ‘other’ (anya) in F=AFIET fordt seems to be unnecessary.
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(From the similar triangles CEK and AEL
CE CK .
= (CK and AL are the perpendiculars on

‘AE AL
BD from C and A)
_CE _CE_CK |
. AE4+CE AC CK-+AL
AC .CD.BC

AC .CK 21
.CE= m=CD . BC+AD . AB
2r
_BC.CD. AC
~CD.BC+AD.AB
Similarly the other expressions can be derived),
(4) “The base and the face are divided by the third diagonal and
the two flanks are separately multiplied by them (the quotients).
The products will be the lower and upper segments of the

d‘ l".
1agona (G. K., Ks. Vya, 139)
ic. AE= AR AD,
3
CE= BC dCD etc., where d, is the third diagonal.
3
‘. AC.CK
(For, as in (3), CE.= CKTAL
AC.BC.CD

T (CKFAL) 2r
But - BZ_D_ (CK+4AL)=A (where A is the area of the quadrilateral)

=fl_1_"gﬂ3— where d;, d,, d; are the three
r

diagonals.
, 2.d,.d;.d,
w CK+AL= gD ar
AC.BD.BC.CD.2r
7 CE==""5 4,4, or

Similarly for the other segments).
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(5) “When twice the area is divided by the product of the base
and the diagonal and multiplied by the lower segment of that
diagonal, we get the altitude from the tip of the (other) diagonal
in isosceles trapezia and other quadrilaterals.”

(G. K., Ks. Vya., 140)

D
C e DH(Fig 11) = ’:%' ZA‘;’“
BE.2Area

BD . AB

(For, from triangle DAB,

A HM B DH=——————A2 - BD

and CF=

Fig. 11
AD . BD

d.d,d;
2 Area
_ AB.AD BD x2 Area

4, 4.4, AB
A EXx2 Area
"AC.AB

. BE . 2 Area
Similarly CF = 3D AB

(6) “The square root of the product of the lower segments of
the diagonals as multiplied by the product of the flanks, when
divided by twice the circum-radius, becomes the altitude from

the point of intersection of the diagonals™. -
(G. K., Ks., Vya., 142)

v AE .BE.AD.BC
2r

ie. EM (Fig. 11)=

(From similar triangles DHB and EMB
EM _ BE
‘DH BD
BE.DH

or E M= BD
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_ BE.AD. BD.
2r. BD
—..BE . AD
2r
Similarly, from triangles CAF and EAM,
EM — AE . BC
2r

AE. BE. AD. BC
2 __
E M? — R )

(7) “The squares of the flanks are subtracted separately from
the square of the diameter. The square roots of the results when
divided by the respective flanks are called Sakalas. The base
divided by the sum of the sakalas is the altitude from the inter-
section of the diagonals. The sakalas multiplied by that altitude
are the segments made by it on the base.”

(G. K., Ks. Vya. 142-142))*
Let ABCD be a cyclic quadrilateral. CG
and DH are diameters through C and D.
The diagonals AC, BD intersect at E and
EM is the altitude from E.
Then CG2—CB2=BG?
D H:—AD?=AH?
%and ‘%g are given the name of

Sakala.

or

AB
Then EM“@
BC DA
BG
A M= W'EM

(For, triangles C G B and E A M are similar because

1The numbering of the verses is confused in the printed text. The verses
run:
qrgy: T fady quE quw aveEdal qF |
AT AT, TYRAGAY: 0 T8 1)
¥ ¥ @ o o fagfaear gawd w0 o
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[LCBG = 1rt| (anglein semi-circle)

= | EMA
and | CGB = | _ EAM (angle in the same
segment)
EM AM
therefore—B—é«-—B G
. _EM.BG
S AM = BC
. EM.AH
Similarly B M =—p—
= A B~ BG L AH
AM+BM=AB=-EM (B~C—+ AT)
AB
EM=8G_am)
BC  AD

We do not know whether this represents the mode of derivation
adopted by Narayana. If it does, it shows that the theorems

(1) The angle in a semi-circle is a right angle; and

(2) The angles in the same segment are equal;

" were known in India in those days.

(8) “If the area is multiplied by the base as divided by half the
difference between the squares of the base and the face, we get
the altitude of the sict. The flanks and their sandhis (projections
on the base) multiplied by the sictlamba and divided by the
altitude at the end of the respective side are the sides and the

abadhas of the siici.” (143—143})
P If PAB is the sictksetra of the cyclic
Quadrilateral ABCD, the siicllamba,
Area .A B '
PQ =g ~per
D 3 v
C AK. P
AQ— AK PQ
DK
BL . PQ
E BQ = —%r
_AD.PQ ~BC.PQ
AP = DK = & BP———CL

L’ B
A W (These results are derived by Sri Padma-
Fig. 13 kara Dvidedi as follows :
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In triangless PD Cand PA B
L.P D C=|_A B P (since the opposite angles of

a cyclic quadrilateral are supplementary)

and|_P is common

.. The two triangles are similar

. AP AB BP

"PC CD PD
PC.AB_AB(BP-B ()

cD cD
pp_PD . AB_AB(AP_AD)

Ch CD
_AB(BP—BC+AP—_AD)

CD -
ie. (APA+BP)CD =A B (AP+BP)—AB
(BC+AD)
ie. (AP+BP)AB—CD)=AB (@B C+A D)
orAp4Bp ~ABBCIAD)

ABAD—BC)

Similarly A P—BP = —ABICD

ie. AP=

AP+BP

Adding 2 AP

__ AB{AB(BC+AD-+AD—BC)4+-CD(BC+AD—AD--BC)}
- A B:—C D?
_AB(2AB. AD+42CD . BC)
AB:—C D2
Now, Narayana has already given the formula—

BD(AD.AB-+CD.BC)
4r

the area of the c&clic quadrilateral =

4 . Area xr

.. AD.AB4+CD.BC= BD

AB.4 . Area.r
BD(AB2—-CD?)
Again from similar triangless PA Q & D A K

AP . DK
PQ="Fp-

o AP=
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_AB.4A.r.AD.BD
- BD(AB:—CD?. 2r. AD

_AB . Area

With the help of this the abadhds and the sides can be easily
calculated.) Thus, if this lemma applies to the general cyclic
quadrilateral, it implies the knowledge of the fundamental pro-
perty of a cyclic quadrilateral, namely that its opposite angles
are supplementary.

(9) The last set of calculations in cyclic quadrilaterals given by
Nardyana is rather interesting. He says ‘“the square roots of the
differences between the square of the diameter and the square of
the diagonal are termed avakasa. The square root of the diffe-
rence of the square of the diameter and the third diagonal is to
be named guna. The avakasas are multiplied by the guna and by
the diameter. The products are then mutually subtracted and
added. The (four) quantities thus obtained when divided by the
third diagonal are the differences between the segments of the
diagonals. By doing sanitkramana® with thesc differences and the
whole diagonals (the smaller difference with the smailer diagonal,
the bigger with the bigger etc.) we get the sggments of the
diagonals of the two quadrilaterals’:

(G. K., Ks. Vya. 145-47)

Let ABCD be a cyclic quadri-
lateral and ABC’D the quadrilateral
in the same circle, obtained by
interchanging the sides BC and
CD. The diagonals AC, BD, AC’
are joined and the diameters CP,
BQ, AR are drawn. Then AP, DQ
are avakdsas and C'R is the guna.
Ifd is the diameter, these are
respectively equal to

YSaritkramana is a technical word for finding two quantitiés (@ & b) from
their sum (a+b) and difference (a—b),
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/& —ACE, 4/d2—BD?, 4/d®—AC™. The differences bet-
ween the segments of the diagonals, namely AE~CE, BE~DE,
AE'~C'E’, and DE’~BE' are then given by
AP.CR.4d+DQ.C R.d.

AC
AP . DQ.d+C R.AP.d
AC
Then with the help of the known diagonal-lengths, AE, CE, BE,
DE, AE’, C'E’, BE’, DE’ can be calculated.

In the next verse we are told how to calculate the areas of the
small triangles formed by pairs of these segments with the sides
of the quadrilateral.

and

“When the third diagonal is multiplied by the product of the
segments forming that triangle and divided by four times the
circum-radius, we get its area”. (Ibid. 148)

In the notes attached to this verse Narayana explains how to
get the sides of the quadrilateral formed by sets of these triangles,
by calculating the third side of each triangle from the known area
and two sides. These third sides will then be the sides of the
quadrilateral.

Thus what Narayana does is the inversion of Brahmagupta’s
method for finding the diagonal-lengths of four side-lengths
forming a cyclic quadrilateral. Narayana has already shown
that three diagonals are possible for any such set of sides. With
the three diagonal-lengths and the circum-radius known, the
four side-lengths can be calculated. But the' method is tedious
and complicated.

5.5.8. The mathematicians of the Aryabhata school understood the
scope and applicability of Brahmagupta’s results clearly.
Parames$vara of the 15th century commenting on Brahmagupta’s
verse wUTFaaTIasd ...... quoted by Bhaskara, says

afer Qs o Swead aviga waf qa e e feantar s

F AT T T TANT | UeeeT AHATFLANT FUTALEAR AT TTfT |

«In quadrilaterals, the diagonals of which are calculated with
the help of this formula, the area obtained by applying the

formula sarvadoryutidala etc i.e. A=+/(s—a)(s—b) (s—c) (s—d)
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will be the exact area. The areas of quadrilaterals const-
ructed with other diagonals will all be less than this.”

The Lilavati verse wsitesm. . .professing to give an easier
method for finding the diagonals (than Brahmagupta’s Fifayqs-
wdad ..) has been criticised! as involving the difficult job of
selecting two suitable jaryas as a preliminary to calculating the
diagonals. Paramesvara’s explanation of the verse answers this
criticism partially.

gagT wata Favagioe agfnds: sragaqarg qgar AdesragdaTiEAr
Fogd qreatafy | qorerey wfgs e wed 99 7 gsexifwar fawsiq) qa @)

SATFIE WAD: | AIHT FOCT GTEq: | QINK ATAL AT, AT FAA 9G-
o g qet il 9@ TR AAATHE AR TTW 4 . wd Tedd
g1 Tl g aredt 3f9 | o7 fag HF  wadnifaeatafa T dafao
........ oA HIgSEAeq T qq T qGhT )

(This is what is said: constructing two jatyas with the four sides
of the quadrilateral one should calculate the three diagonals with
their help. The procedure is this.—The longest and least sides
should be divided by a chosen number. The quotients will be
the base and the perpendicular side. From them the hypotenuse
is to be calculated. Thus one jdtya is produced. By its
hypotenuse the other two sides of the quadrilateral should be
divided. The quotients will be the base and the perpendicular
sides of the other jatya. Thus procuring. two jatyas one has to
calculate the diagonals of the quadrilateral. In the figure
obtained in this way the area got by applying the rule wddrifr
...... agrees with the real area.....In this case there will be a
circle passing through the four vertices.)

But the sides wiil lend themselves to this treament only if they
form sides of a Brahmagupta quadrilateral i.e. if the sum of the
squares of the longest and shortest sides equals the sum of the
squares of the middle ones. Parame$vara or his predecessors in
the school have, in addition, investigated the properties of such
a quadrilateral, which are mainly
(1) The given sides with the diagonals calculated -as above

enclose the largest area.

1H.C. Colebrooke’s translation of the Lildvati with notes—H.C. Bannerji
under V. 190.
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(2) Brahmagupta’s formula A=+/ (s—1a) (s—b) (s—d)(s—c)
is strictly applicable to such quadrilaterals.

(3 A circle can be drawn through the four vertices of such a
«quadrilateral.

5.59. Parame$vara gives a formula for the circumradius of a
cyclic quadrilateral after the Lilgvarl verse! for the gbddhas and
altitude of a siiciksetra

Qe gl g aurt

WERTERTTE-au- g |

e agd faweda fiff

wd T fede aferamatied |

(“The three sums of the products of the sides taken two at a
time are to be multiplied together and divided by the product of
the four sums of the sides taken three at a time and diminished
by the fourth. If a circle is drawn with the square root of this
quantity as radius, the whole quadrilateral will be situated on it.)
i.e. the radius

_ J (ab--cd) (ac+bd) (ad+bc) o

N (a+b+4c—d) (b+c+d—a) (c+d+a—b) (d-Fa+b—c)
if a, b, ¢, d are the sides. The Kriydkramakari, the anonymous
commentary on the Lildvari belonging to the same school, intro-
duces the same verse with the prelude? (wa wgehioreq: ofed:
wrgFerTa FOgan) and gives the rationale (upapatti) too.

Draw a circle and two mutually

N \:\' perpendicular diameters XOX’ and
AR \ YOY'. With AC parallel to XOX’
PANE D ' as istakarpa (the chosen diagonal)
" S DN (draw a cyclic quadrilateral ABCD.
/ TN 7"' Join the second diagonal BD. Then
l’ \\\k“,
’\\‘ v
Fig., 15

1Lilgvati, V., 196,
2K.K. p. 639
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If AD and CD are interchanged. AC will still be a-diagonal, but
we get a third diagonal (bhavikarna) different -from BD.(called
itarakarna). Let D’ be the new position of D. Then D Y/'=D' Y’
and arc DD’ =arc CD—arc AD
Now if' BK is drawn perpendicular to D D’,
BD . BD’
2r
or 2r= BD . B.D’
—5—
Again BK will be the sum of the altitudes of the triangles BAC
and DAC on AC as base.
AC.BK
2
. 2r=BD.BD’=BD.BD'.AC
’ BK 2 Area
_ BD.BD'.AC
T 4 Area
_ BD . BD' . AC
44/(s—a) (s—b) (s—¢) (s—d)
. BD2 . BD’2. AC?
T=T16G6—2) 6—b) —0) 6—3)
BDz . BD’2 . AC:
= (@afbFc—d) (b+ct+d—a) (c+d+a—b) (d+atb—c)

BK =

= the area of the quadrilateral.

or

But BD2= (bctid:_(iz+bd) (by Brahmagupta’s theorem)
_ (ab+-cd) (ac+bd)
ACt= bc + ad
e (cd--ab) (ad4-bc)
BD*= ac + bd

.. BD?2 . BD'? . AC2=(ab+4-cd) (ac+bd) (bct-ad)
(ab4-cd) (ac4-bd) (bc+ad)
(a+b+c—ad)(b+c+d—a)(c+d+a—b)(d+a+b—c)
This formula was discovered in Europe more than two centuries.
later i.e. in 1782 by Lhuilier (D. E. Smith. History of Maths,.
Vol. IL. 286).

or r=
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The Kriyakramakari also says that the diagonals calculated
according to Brahmagupta’s rule will be the niyata-karnas, the
determinate diagonals, when the quadrilateral is cyclic.

5.5.10. Proof of Sin? A—Sin? B == Sin (A+4B) . (Sin A—B)
A—2§-B Sin? A-2—B

The Yuktibhasd, an exposition in Malayilam of the mathe-
matical and astronomical knowledge of the time, deals with the
«cyclic quadrilateral in detail, using it to arrive at trigonometrical
results and proving Brahmagupta’s results with the help of these.
“The lemmas first taken up for proof (Y. B. pp. 224-227) are

(1) Sin? A—Sin? B=Sin (A+B). Sin (A—B)
A4B A—B

—Sin2 ==
5 Sin 5

and Sin A . Sin B = Sin?

(2) Sin A. Sin B=Sin?

Let ABCD be a cyclic quadrilateral
in which A B>CD,

Along the arc AD set off AE=CD.
Join AE, ED and drop the perpendi-
culars EE’ and DD’ on AC.

Then arc ED=arc AD—arc DC,
and since arc AE =arc CD,
EE'=DD’ ‘

.. ED=E'D’ and AD=CE

Now in the triangle DAC, E’ D’ =the

Fig. 16 difference between the projections of
the sides on the base=chord of arc
(AD—DC)

AC=the sum of the projections
=chord of arc (AD+DC)
Hence AD2—DC2=AD"?—D'C2=(AD’+-D’'C) (AD'—D’'C)
=chord of (AD+DC). chord of (AD—DC)...(1)
-which, as the editors of the Yuktibhasa point out, is equivalent to
Sin? A—Sin? B=Sin (A+4-B). Sin (A—B)
Also arc AC+arc DE=arc AD+-arc CD--arc AD—arc CD
=2 arc AD
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arc AC—arc DE =—=arc AD+4arc CD—arc AD+arc CD
=2 arc CD

If we put arc AC=A and arc DE=B,

arc AD =A—'{2_£, and arc CD=_A._E_I.3_
Substituting these values in (1)
A+B- A—B

Sin?2 —— —Sin? 3

5 ==Sin A. Sin B.

5.5.11. Derivation of Brahmagupta's expressions for the diagonals
of a cyclic quadrilateral

These results are used to get expressions for the diagonals of a
cyclic quadrilateral and its area, and incidentally for proving
Ptolemy’s theorem (Y. B. 228-237)

Let ABCD be a cyclic quadrilateral. Let AB>BC>AD>DC.
In arc AD, set of AD’=arc CD and in arc AB set off AB’=BC.
Join the middle points X and X’ of the arcs DD’ and BB'.

Then arc X A X' = XD’ 4+ D’A + AB’ +B'X’
= XD - CD + BC 4 BX’
== arc X C X’
. XX’ is a diameter. ... arc X’A=arc X'C=arc BC+arc BX’
Similarly arc XA = arc XC=arc CD 4 arc DX.
Now ch. AD. ch. CD.
—ch? AD;—CD
— ch? AD—-CD
2
= AX2—-XD?
AB.BC—ch: 2BEBC

_cne AB—BC
2
=AX"2—X'B?
.. AB. BCH+AD, CD
=AX"2+AX2—X'B?—-XD?
Fig. 17 But AX"2-+AX2=XX'2
(L_XAX’ is the angle in a semi-circle)
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. AB. BC + AD.. CD = XX'2—XD2—X'B?
= X'D*—X'B?
= B’'D.BD
Therefore the sum of the products . of the sides about the first
diagonal = the first diagonal x the third.
B'D . BD

In the A DBB’, altitude DP == 5

(r is the radius of the

circle)

But DP is equal to the sumof the altitudes on AC from Band D
... The area of the quadrilateral ABCD
= A\ DAC4+ A BAC

=_AZE x sum of the altitudes

_AC.BD.BD
4r
Thus here, Nardyana’s formula for the area of a cyclic quadri-
lateral is derived and proved incidentally.
Now considering the cyclic quadrilateral AB’CD
AB’ . AD{CD . B’C=AC. BD (sirce BD is the third
diagonal with respect to AB'CD
But AB’=BC and B'C=AB by construction,
.. BC.AD4CD.AB=-AC.BD
That is, the sum of the products of the opposite sides=the

product of the diagonals. This is Ptolemy’s theorem.
It has been already proved that
B'D . BD=AB . BC+4+AD.CD
and AC.BD=AD. BC4AB.CD
. BDz.B'D. AC=(AB.BC+AD.CD) (AD.BC+
AB . CD)

(AD.BC4AB.CD)(AD.CD+BC. AB)

. .
or BD*= BD. AC
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But B'D . AC=AB’ . CD4+AD . B'C
—BC .CD+AB . AD

__(AD . BCH+AB. CD) (AD.CD-+BC . AB)
= AD.AB1CD .BC

Hence Brahmagupta’s formula.

..BD2

5.5.12 Proof of Sin (A+B)=Sin A Cos B4-Cos A Sin B

Next the Yuktibhasa proceéds to prove (pp. 237-239)

geometrically the trigonometrical identity.
Sin (A 4-B)=Sin A. Cos B--Cos A. Sin B,

which is found stated without explanation or proof in the section
on Jyotpatti appended to Bhaskara 1V’s Siddhantasiromani.
The statement of this lemma, famous in the Aryabhata school
as the sl9 gwztg, is found in many works of this school
including the Tantrasamgraha and it is unanimously attributed
to Madhava of Samgamagrama (14th century).

Mg cerfrstfasraavre faegfaeds fawsaany

(T. S. 1L 163)

“(The sine-chords of two arcs reciprocally multiplied by the
other (cosine) chord and divided by the radius, when added or

¥ subtracted from each other will

be the sine-chords of the sum

or difference of the arcs). In

the quadrant XOY, let PX=A

and PQ=2B. Draw PR per-

pendicular to OX. Join OP.

Let P’ be the middle point of

PQ. Join OP’ cutting chord

PQin §S. Join SR. Then PR

O and PS are the bhujajyas (sine-

Fig. 18 chords) of arcs A and B respec-

tively, and OR and OS are the corresponding kofijyds (cosine
chords). Now OSPR is a cyclic quadrilateral.

.. PR. OS4+PS,OR=OP. SR
But SR is the sine-chord of the combined arc X P’ i.e. of (A4-B)
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PR.OS+PS.OR

. SR=T. Sin (A+B)= PS

(Where r is the

radius of the circle)

_ r Sin A.rCos B-+r Sin B. r Cos A
r

or Sin (A4-B)=Sin A. Cos B-}Cos A. Sin B.

That RS is the sine-chord of thesum of the arcs X P and

P P’ is proved by the Yuktibhasd editors as follows. Let the

circle through R, P & S be drawn. Then

P RP, PS are whole chords and RS is the

whole chord of arc (RP4-PS). In a

S circle with twice the radius all these will
be half-chords or sine-chords

.. RS is the sine-chord of arc (RP+-PS)

ie.of arc XP+PP), if PRand PS

are the sine-chords of arc XP and PP’.

(Y. B.p. 214)
In the last foot of the above verse, an alternative method is
given for finding the sine of the sum and difference arcs :
............ TET TEATTEFIANTINTS § |

(<Or the roots of the (two) differences of the squares of the sine
and its altitude when added to or subtracted from each other
will be the sine-chord of the sum or difference arc.”)

That is, if, in Fig. 18, PT is drawn perpendicular to RS,
RS is /PRE—PT2 4 4/PS?—PT?

Nilakantha, commenting on A.B. Ganitapada. 12 shows how PT
can be found from the similar triangles PTR and PSO or PTS
and PRO (4.B. p. 87). Hence the sine-chord of the combined
arc can be easily found out. For the sine-chord of the difference
arc the difference of the two roots is to be taken.

5.8.13. Proof of area of a cyclic quadrilateral
= 4/ (s—a) (s—Db) (s—¢) (s—d)

Lastly the expression for the area of a cyclic quadrilateral in
terms of its sides is derived. (Y. B. pp. 247-257)
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Let A B CD be acyclic quadrilateral. Join
the diagonal AC and draw the altitudes
DEand BF onit. If D Eand BF are
produced and D G and B H are drawn per-
pendicular to them, D G B H forms a rect-
angle with one side = the sum of the
altitudes and the other side = the distance
. between the feet of the altitudes i. e., E F.
Fig. 19 Let O be the middle point of A C.

Then in A DAC

E O = half the difference between the

projections of the sides on A C

1 . CDz~AD?
7 T AC

1. ABz ~ BC2
2 T AC

Similarly from A BAC FO =
1
~EF=EO+4+FO =5 AT

(If the altitudes fall on the same side of O, EF will be EO~FO;
but still the final expression will be the same)
-+ HD? = BD? — BH?

= BD? — EF

— BD: — {(AB2 + CD?)—(AD2 { BC?) }2

{ (AB24-CD?) — (AD*4BC?) }

2AC
Now the area, A, of the quadrilateral A B CD

= A DAG + 3 BAC = L AC. sum of altitudes
o A2 = ,/}.Cf.[ BD? — { (a2 4 c?) — (b% + d?) §2]

4 2 AC
. AC? 4AC2.BD? — {(a® +c?) — (b2 4 d?)}®
4 4 AC?
_ ( AC.BD )2_ { (a® 4+ c?) — (b2 4 d?») §2
2 7

(Y ) - ()

by Ptolemy’s theorem
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= (F+5rTrii-% § + -5

¢ b gﬁ}

4 " 4 4
G+ -G -G =) -G -]

a c b d a c b
strtr-7)(z -7
b, d a ¢
(z+ 7 +7-2)(
= (s—d) (s—b) (s—0) (s—a),
a b c d
Where s =m t5 t5 +75
" A= V(5—2) (s—b)(5—0) —3d)

The occurrence of these geometrico-algebraical proofs in the
Yuktibhasa and Kriyakramakari shows conclusively that, as in
any country making any real progress in sciences, in India too
proofs were required and esteemed.




CHAPTER VI
THE TRIANGLE

6.1. The earliest mention of a triangle in Indian literature is, as
has been already seen, perhaps in the Vedas; as trirasri in the
Rgveda and tribhuja in the Atharvaveda. The Sulbasiitras deal
with one particular kind of triangle only, viz. the isosceles triangle
with base angles equal to tan—1 2. The name prauga given to this
triangle is entirely ungeometrical with no reference to any of its
geometrical properties. The word means the forepart of the shaft
of a chariot or cart. Indirectly the Sulbasiitras were quite
familiar with another important type of triangle, the right
angled triangle. But such triangles were viewed not as triangles
but as halves of squares and rectangles cut by their diagonals.

Nothing much of the properties of the prauga was investigated.
From the construction for a prauga of given area we can infer
that the authors of the Su/basiitras knew that the area of the
triangle = } the area of a rectangle on the same base and with the
same altitude = } the base x altitude. Similarly from the construc-
tion of the ardhydas or half bricks by cutting a rectangular brick
along a diagonal, it is clear that they knew that the area of a
right triangle also is half the product of the perpendicular sides
=4 base x altitude.

Another property of the isosceles triangle known and used by
the Sulbasiitras is that the line joining its vertex to the middle
point of the base is perpendicular to the bgse.

The early Jainas had no use for the triangle. Most of the
ancient works do not mention the triangle at all. The Prajiiapan-
opangam and the Bhagavati Sitra, speaking about the arrange-
ment of atoms (or shots) say that one of the arrangements can
be in the form of a triangle.

6.2. Aryabhata’s rules for the area of a triangle is

fassren FANIR GRIAFEIAITETA:
(A.B. Ganitapada 6)
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(The area of a triangle is the product of half its side (base) and
the altitude.)

It is difficult to decide what the word samadalakoti here means.
Bhaskara I and Parameévara take the word to mean avalambaka
(altitude), the perpendicular side common to the two triangles
formed by the altitude. Nilakantha, on the other hand, explains
it as the perpendicular which divides the base into two equal
parts and adds that Aryabhata is speaking about the equilateral
triangle useful in dividing the circle into 6 parts, though the
formula is equally applicable to the general triangle. But Bhaskara
being much nearer to Aryabhata in time, his opinion should be
considered weightier.

To calculate the éirdhvabhuja (the height of the tetrahedron)
referred to in the second half of the same verse, Nilakantha
makes use of verse 8 which reads :

Fre ared qETEd T 1

frer@rmiT e G @aweTEn i

und interprefs the para as the orthocentre and he shows why all
the three perpendicular bisector altitudes have necessarily- to be
concurrent.!

6.3. In Brahmagupta’s hands, the triangle gets fuller treatment,
but curiously enough, for him the triangle? is a quadrilateral with
one side=0. Thus he says :

W faagRTgaiaaTgErReTE: |
AT AT 98 FETq 1)

(Br. Sp. Si XII. 21)
(The gross area of a three or four-sided figure is the product of
half the sums of the opposite sides. The exact area is got as

1We have no means of knowing how much of the mathematical knowledge
found in the commentaries belongs to Aryabhata’s time and how much is
later. The very obscurity of Aryabhata’s statements will indicate that his
codified rules were meant to be reinforced by mueh oral instruction.

2G.R. Kaye (The Source of Hindu Mathematics. J.R.A.S. 1910 p. 753) says
“Brahmagupta gives the area of the cyclic quadrilateral as

VE—DE-—DBG--0E— d

which is an extension of the well-known theorem of Heron for triangles™,
suggesting thereby that the Indians got the formula from the Greeks. But
it is more probable that the Indians discovered the theorem for the cyclic
quadrilateral first and extended it to cover the triangle, and then as a proof
for it, when applied to the triangle, showed how the usual expression

base x altitude could be equated to this. Hence the cccurrence of the
expression for the area of a triangle in Heron can hardly be advanced as an
argument for India’s indebtedness to him.
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the square root from the product of four sets of half the sum of
the sides each respectively diminished by one side.) That is,
if a, b,c,d, are the sides of a quadrilateral the gross area
_atc b4d

> T3 When one of the sides is zero the quadrilateral
A

becomes a triangle, whence the sthila area of a triangle
base sum of thesides a  bic
=3 -~z =7 7
The second part of the verse says the exact area of a
triangle =4/s(s—a) (s—b) (s—c) (where s is the semi-peri-
meter,) a formula generally credited to Heron of Alexandria.

Brahmagupta does not give the derivations or proofs of bis
formulae or theorems. But the derivation of this formula
was known in the Aryabhata school at least by the 15th cen-
tury, and possibly much earlier.

The next verse gives formulae fof calculating the abadhas, the-
segments of the base made by the altitude (or rather™#e pro-"
jections of the sides on the base) and the altitude.
waFEgagmgar ipmfamand |
TR AR qEEAAaaaasa: 1

(Br. Sp.-Si. XII 22)
(The base diminished by and combined with the difference of
the squares of the sides divided by the base, and then divided
by two gives the abddhds. The square root of the square of the
side diminished by the square of its abadha is the aititude.)
In fig. 1 AD is the altitude and
A ¢ BD & CD are the abadhas.
i b2~c?
=)
and AD = 4/AB*_BD?or

4/ AC:—CD?

BD or CD ::m:]:

Fig. 1
These results are obtained from a consideration of the right
triangles ABD & ACD in the Yuktibhdsa (p. 222).

1T. Heath—A History of Greek Mathematics Vol. 1T p, 103,
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For, from these, BD2=:¢c2—AD?
CD2=b2—-AD?
BD2—CD?_-c2—b?
i.e. (BD+CD) (BD—CD)-=c?—b?
a.(BD—CD) —c2—b2

or BD—-CD= :

2__h2
or 2BD—a="""
a-j-c2—b?

a

BD = 3

2__

and a~—2CDn:c b2
a—cz—b?

a

Then AD?-=side*— (its abddha)?
XIL., 27 gives an expression for the circum-radius of a triangle.
favsren e qoEigrTaaTEIg T gRU-I9: |
a1 fomn feagdsaorgaafase: )
(The product of the sides divided by twice the altitude is the

circum-radius, and twice that is the diameter of the circle which
touches the vertices of the triangle and the quadrilateral)

i.e. If r stands for the circu-
radius of the triangle ABC
(fig. 2) and AD is its altitude
_AB . AC.
~ "2.AD
This result is now-a-days
proved by drawing AE the
diameter through A and
completing the triangle ABE,
N when the two triangles ABE
and ADC will be similar
(L ABE=|_ ADC (rt _s)
Fig. 2 and | AEB-=| ACB({_sin
the same segment.)

A
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_AB _AD
"AE TAC

AB . AC

or AE=2I=T

But the method adopted by Brahmagupta might have been more
akin to the proof given in the Yukribhdsa for the theorem that
the product of two contiguous chords divided by the diameter is
equal to the altitude dropped from the meeting point of the
A chords on the line joining
H 7 E their ends.! For, arcs took
the place of angles in Indian
astronomical geometry. The
Y.B. proof is as follows. Let
ABC be a triangle inscrib-
ed in its circum-circle and
B D C  AD its altitude. Through
E the middle point of the
\ arc AC, let the diameter
F G EF be drawn, Let FG be
parallel to BC meeting the
Fig. 3 circumference in G. EG
is joined and EH is drawn parallel to FG.
Then GF = EH = chord of arc EH
But arc EH = arc BAC—2 arc CE
= arc BAC—arc AC
= arc A B.
.. Chord EH = GF == chord AB
Then from the similar triangles ACD and EF G,

EF  AC
FG = AD
AC . FG AC. AB
or EF = 2r = D = AD
__ AC.AB
— “2AD

1Y.B. pp. 244-246.
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Similar triangles are not dealt with separately. But in the
computations connected with the quadrilateral such triangles
play an important part.

6.4. Sridhara too treats the triangle as a particular case of the
quadrilateral. The expressions?! for the area of a triangle are
A = Vs(s—a)(s—-b)(s—¢)
and A = } base x altitude.
Sridhara does not give any rule for the calculation of the alti-
. tude (lamba) and the abddhas.

6.5. In keeping with the elaborate character of his work
Mahavira’s treatment of the triangle is much fuller. First of all
he classifies triangles into three kinds (1) sama, equilateral (2)
dvisama, isosceles and (3) visama, scalene.? Brahmagupta’a ex-
pression for the gross area of a triangle is repeated.? For the
exact area, in addition to Brahmagupta’s
A= \/s(s-—-a) (s—b)(s—c),

Mahavira gives the familiar expression involving the base and
altitude.t ie. A=} base x altitude. For both these expressions
the triangle is treated as a quadrilateral with one side = 0.

The expressions for the altitude and abadhds of a triangle
occur in verse 49, ch. VII.

Mahayvira indulges in a few calculations from the gross and
exact areas of geometrical figures, which appear like a mere dis-
play of computational ingenuity, but, nevertheless, show that he
was acquainted with the special expressions for the area of
equilateral triangles. The calculation for the equilateral triangle
is :

ERERINIS SRR GRS
argferanfagd awer ga=x faswet |

(G.S.S. VIL 1683)
(The square root of the square root of the difference of the

squares of the (two) areas multiplied by two is the side in an
equilateral triangle and the diameter of a circle.)

17.5. 43,
2G.S.S. VIL 4-5.
3Ibid. VIL 7.
41bid VII. 50.
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For, the gross area of an equilateral triangle, A,.
= product of half the sums of the opposite sides

_a &
-2 -2
The exact area A, = 3_/.% . a2
2 2 at . 3at . 3_4_
A —A =74~ T6 —16
The 4th root of A> — A? = ;_

ora=2( A% —a)

The calculation of the base and side of an -isoceles triangle
similarly reveals the knowledge that the altitude of an isosceles
triangle bisects the base.
wagataE fen qeatagfes amg:
gradqawsy franfageer swufaes o

(G.S.S. VIL. 171}
(Twice the square root of the difference between the squares of
the areas is the base, and the approximate area is the side, if
these are divided by the square root of half the base. This is
the calculation in an isosceles triangle) i.e, if A, and A, are the

areas,
- 3
base = Z(Ai Ai) =2(A:‘:~A§)i
(& ~ar)
and side = Aa

1
(A2 ~a )
For, if a is the base and b the side

__ab _a a?\}
Ao ="y and A, = 2'("2""?)

A3=a2<b2_a2 ——a2b2 al—Aa,——f

T em——— e
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a — 2( AZ __ A2 )i
a e
§
7 (A-a)
In VII, 213 is given the expression for the circum-diameter
equivalent to Brahmagupta’s :

e product of the sides
- 2 x altitude
But Mahavira is the first to speak of a circle inscribed in a
triangle and of its diameter. Says Mahavira
afed: T aSEAmas ageAie a9
garaEs s fafafsse: g

(G.S.S. VII 2233)
(~“The exact area of any (rectilinear) figure other than a rectangle
should be divided by one fourth the perimeter. This is speci-
fied as the diameter of the inscribed circle.)
The rule is quite general. The rationale is clear from the
attached figures.

Fig. 4 Fig. 5
For, if the in-centre, I is joined to the vertices of the figure
and to the points of contact of the circle with the sides, the
whole figure is divided into as many triangles as there are sides.
These have the sides of the figure as bases, the lines joining I to
the vertices as sides and the in-radii at the points of contact as
the altitudes.
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Hence the area of the triangle

a.r b.r c.r
=— + —5— + 5 (Where a, b, ¢ are the
lengths of the sides and r the in-radius)
r
=5 (a+b+-c)
area area

atbic } perimeter
2

The expression gives us no clue which will enable us to know
whether Mahavira knew that the in-centre is on the bisectors of
the angles of the figure.!

6.6 Aryabhata II and Sripati give the expressions for the exact
area of a triangle? and the abadhas and the altitude.?® Sripati
gives the expression for the circum-radius too, but Aryabhata
omits it. Both these authors investigate the conditions under
which a triangle or a quadrilateral is possible. According to
Aryabhata
ety sfafy dfed ywrEessa: |
qE qEETerEed ga F agafa

(Ma. Si. X1V. 64)
(If every side is subtractable from the semi-perimeter, the recti-
linear figure is possible. If the semi-perimeter is subtractable
from any of the sides, that is not a closed figure.) This, though
the wording is different, means the same as ‘no side is to be
greater than or equal to the sum of the remaining sides’. We
do not know whether any proof other than visual demonstra-
tion with rods (which Bhaskara II advocates) was sought for or
found. (That the shortest distance between any two points is
the straight line joining the two points would have been the
proof to suggest itself.) Sripati gives the same condition, but in

It may be pointed out here that Heron’s derivation of the formula

A=1/s(s — a) (s — b) (s — ¢) (T. Heath, History of Greek Mathematics
Vol. II. p.320) employs the triangles formed by joining the in-centre to the
vertices of a triangle.

2Ma. Si. XIV. 69 and 78 & Si. Se, p. 85.
3Ma. Si. XIV 66-67 & Si. Se. p. 85,
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a more straight-forward way and without mentioning the

triangle.
TATARIT A7 FWIETRATEICEFT () o= |
FACHH! FAIATEARN § 4§ age aeErdity: ||

(Si. Se. X111, 26, 27)

(If in a quadrilateral with straight sides the sum of the other
sides is less or equal to the greatest side, the wise should under-
stand that it is not a closed figure.)

Bhaskara II repeats this condition. Another new feature in
Aryabhata’s treatment of the triangle is that he is aware that
the altitude of a triangle may sometimes fall outside the triangle.

This happens in an obtuse-angied
A triangle and then the projection or
abadha of the smaller side about
the obtuse angle lies outside the

triangle.
TR eaT afe ar afgsad o ang
D B c : (Ma. Si. XIV. 67)

Fig. 6

(The abadha of the shorter side is vyasta if it lies outside the
figure.) Vyasta being the opposite of samasta (combined) and
so meaning separated, diminished, it should be interpreted here
to mean ‘negative’. Most likely Aryabhata is the inspirer of
Bhaskara’s rnabadha (negative projection) also.

6.7. Bhaskara II has nothing new to add on the triangle. On the
other hand he even omits to notice that the triangle can have a
circumscribing circle. Bhaskara’s achievements were in the circle
and the sphere.

6.8. Nariyana Pandita’s treatment of kserraganitam is as ela-
borate as that of Mahavira. All the knowledge of triangles
contained in his predecessors’ worksis found in the Ganitakau-
mudi, often in a more precise form. Besides, he has new ex-
pressions for the circum-radius and area of a triangle,
HIITIET AT AVIRAN TsAATan AT |
afrgfagmmEed SEy ggaq n

(G. K. Ks. Vya., 133)
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(The square of the altitude diminished by the product of the
abadhas is divided by the altitude. Half the square root of the
sum of the square of this and the square of the base is the

circum-radius.)
A

B D C

Fig. 7
Let ABC be a triangle and AD its altitude. Then BD, CD
are the abadhas and the rule says that the circum-radius

- AD2 BD . DC 2
%\/ BC2t- ___————AD )

For,! by the already known formula for the circum-radius,

__ AB.AC
= T2AD
o _ ABACE
T T4ADz
__ (AD24BD?) (AD2+CD?)
- FAD?
_ AD*}AD? (BD*}-CD?)4-BD2 . CD?
= 3 AD®
__ AD*{AD: (BC:—2BD . CD){BDz . CD?
= 4 AD?
__AD2. BC>4+AD*—2AD?. BD . CD-+BD?. CD?
- 4 A3

— i{gc2+<W)§

re1. /\/BC2+(AD —BD. CD)

1The editor of the G.K. gives this derivation. The other derivation given by
him invl?lving equality of angles is unlikely to have been the one adopted by
the author.
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Narayana’s new expression for the area of a triangle is em-
bodied in
IgURAEEIeS faverarat ag aforag
(G. K., Ks. Vya., 134)

(The product of the sides of the triangle divided by four times
the circum-radius is its area.)

This well-known expression for the area of a triangle is easily
obtained from the basic one by substitution)

a .
=3 - altitude
_ 2&.be_abe
2 2r 4r

If the altitude is produced to meet the circum-circle, the por-
tion beneath the base can be calculated with the help of the
sitra :

AEIERANTATAT GORAH| HAGHIE: |
wad fag) et AT ag S T )
(G. K. Ks. Vya., 101)

(The lower part of the altitude which touches the circum-circle
is the product of the @badhas of the base divided by the altitude.

The abadhas reciprocally multiplied by their sides and divided
by the altitude are the sides.)

A That is, if, in the A ABC
inscribed in a circle, AD the
altitude is produced to E on
the circum-circumference

BD.DC

DE= —AD

 BD.AC

)

CD. AB

B C andCE= -A—D-

These results can be easily
derived from the similar tri-
Fig. 8 angles ADC, BDE, and ADB,
CDE.
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6-9.1. For the mathematics of the next period dominated by
Samgamagrama Madhava, which may be termed the period of
the later Aryabhata school and extends roughly from the middle
of the 14th century to the 17th century A.D., we have to turn
to the Yuktibhasa and the Kriyakramakari though the computa-
tional formulae arrived at in the school are to be found in many
a work like the Karanap.iddhati, the Tantrasamgraha and the
Sadratmamala. In this school, whose motto could very well have
been, “Let none but an astronomer enter these portals”, mathe-
matics was completely subservient to the needs of astronomy.
The geometry of the circle and of chords was its chief study.
The triangle and the quadrilateral are now formed not by lines
but by chords. The chief merit of the Yuktibhasa is that it pre-
serves for us the rationales and proofs developed in the school,
whereas the other schools either did not have them or did not
preserve them.

6.9.2, The theorem that the altitude of an isosceles triangle
bisects its base and its corollary that in a scalene triangle the
altitude is pearer to the shorter side are stated but taken as
axiomatic.! Other theorms stated are:?

(1) Two right angled triangles are similar if the hypotenuse
and one side of one triangle are respectively parallel and per-
pendicular to one side and the hypotenuse of the other triangle.

(2) Two right triangles are similar if (1) the three sides of
the one are parallel to the three sides of the other, (2) the three
sides of the one are perpendicular to the three sides of the
other.

(3) " In similar figures the ratios of corresponding sides are
equal.

6.9.3.1. The following propositions are supplied with proofs.
(1) The area of a triangle=} base xaltitude.3 The proof is
best demonstrated with the triangle placed in such a way that

1Y.B. p. 144.
2Y.B. p. 85.
3Y.B. p. 223.
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the longest side forms the base. Let
ABC be such a triangle and AD its al-
titude. The middle points E and F of
the abadhas BD and DC are joined
to the middle points G and H of
AB and AC. The portion EGB is
Fig. 9 lifted and placed in such a way that BG
coincides with AG and triangle EGB
occupies the position E'GA. Similarly
FCH is placed in the position AF'H. The / ABC is now trans-
formed into the rectangle EFF’E’ whose sides are thealtitude and
half the base of the triangle. Hence the area of a triangle=
} base. altitude. In the same context Brahmagupta’s experssions
for the abddhds are also derived (the derivation is already
given).
(2). "The altitude of a triangle is equal to the product of the two
sides (other than the base) divided by the diameter of the circum-
circle.
The earlier mathematicians gave this inverted as the
circum - diameter = p__________roduct. of sides .
altitude
The proposition as given above also does not exactly correspond
to its statement in this school. The Yuktibhasa says. «If the
product of the sides of a triangle, which are invariably chords
of a circle, is div.ded by the diameter of that circle, the quotient
will be the altitude of the triangle whose base will be the chord
of the sum of the arcs of the sides.” This is an annotatory
translation of

sk

[ ]
[ S —

s qeea " fasarat @v gsad
(The mutual product of the sine chords divided by the radius
is regarded as the altitude) which is found in one version of the
Tantrasamgraha with a Malayalam commentary.? The proof
is already given in 6.3.

1Y.B. p. 231.

2The Transcript of the Manuscript belonging to Desamangalath Nampatiri,
p. 53. The Tantrasarhgraha published from the Trivandrum Manuscripts
library does not seem to contain the full text. Or, perhaps the Tantra
sarigraha has different versions with considerable variations in the volume of
contents.
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6.9.3.2. The area of a triangle =1/ s(s—a) (s—b) (s—c)

Here what is attempted is not a geometrical derivation of the
formula but a justification in which by elaborate algebraical
reasoning it is shown that } base x altitude

=4/ s(s—a) (s—b) (s—c). The actual derivation was effected
by viewing the triangle as a cyclic quadrilateral with one side = o.

6.9.3.3. Nilakantha Somayajin while commenting on Aryabhata I's

FEAaT-aeEEnig @ ' gehaffa
(A.B., Ganitapada 6)

dwells at length on how to calculate the #rdhvabhyja (the height
of the tetrahedron), which is the perpendicular dropped on the
plane of the base from the vertex. Obviously this line is the
one joining the apex to the circum-centre-cum-ortho-centre of
the basal equilateral triangle. In this connection Nilakantha
proves that the perpendicular bisectors of the sides of an
equilateral triangle are concurrent. “The ends of the base will
be equidistant < from all the parts of the perpendicular line from
the top vertex. For, the middle point of the base is equidistant
from its ends and the perpendicular will fall at this point, since
the triangle is equilateral. Otherwise the equality of the left
and right sides will vanish, in which case the . .Oddhds will be
unequal  For demonstrating this, two rods of the length of the
base . .. ... Moreover, the very fact that the kotis of the
dalas (the right triangles into which the altitude divides
the triangle) are equal, proves that their bases also are equal,
since the hypotenuses are equal. This is indicated by the word
samadalakoti. Hence in an equilateral triangle, the ends of the
base are equidistant from the point of intersection of the altitude
and the base. Again the left and right ends of the base will be
equidistant from the upper portions of the altitude also, since
the altitude goes up vertically and is equally inclined to the base.
It is only when one of the ends is inclined that the parts above
will be nearer to one end and farther away from the other end.
If there is non-inclination (uddsinatva =<indifference, sitting
above), the distances will be equal. Similarly, the distances of
each part of the perpendicular at the middle of the right side
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from the ends of the right side will be equal. And these two
(perpendiculars) have to meet somewhere. For, how can a line
starting from the left end of the base reach the middle of the
right side without passing the line going vertically up from the
middle of the base? Since this line is inclined to the left side,
the line from the middle point will be inclined to the line from
the end. Hence the intersection of these two will be equidistant
from all the three vertices, since every point on the perpendi-
cular to the base will be equidistant from its ends and every
point on the perpendicular at the middle of the right side will
be equidistant from the ends of the right side. Hence the ends
of the base as well as those of the right side will be at the same
distance from the point of intersection of the two perpendi-
culars ... ... In this way, all the three vertices will be equidis-
tant from the point of intersection. By the same argument, the
perpendicular at the centre of the left side also will pass through
the intersection” (4. B. Ganitapada. pp. 31-32). Though this
proof is not quite in the Euclidean tradition, it is ably and
logically reasoned out.

6.10. The Theorem of the Square on the Hypotenuse

Bhaskara II in his Vasanabhdsya on Lilavati asserts in a
poetical and philosophical vein, that all mathematics is really
trairasika, proportion. Modifying it a bit, we can say that
all Indian geometry and trigonometry is really the theorem of
the square of the hypotenuse. A pre-occupation with this
theorem and the right triangle is a legacy of the Sulbasiitras
(vide chapter II).

The statement of the theorem in the Sulbasiitras has reference
to the sides and diagonals of squares and rectangles, whereas
Aryabhata’s statement is
vy oA fifeadter Foiaw: @

(A. B. Ganitapada. 17)
(That which is the square of the base (bAuja) and that which is
the square of the perpendicular (kofi) that is the square of the
hypotenuse.)

1Under Lilavati, 239.
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If we look into the etymology of the word bhuja the significance
of this statement is not far to seek. Bhuja coming from bhuj
to bend and retained in its original sense in bhujariga means a
curve, an arc. When astronomy demanded a close study of the
circle, the chord stretched across the arc came to be called
bhujajya (the bow string of the arc) or bhuja for short. When
the sine chord i.e. the half-chord of the arc assumed importance
in astronomy, bhujajyd came to mean the half chord. The
remainder of the quadrant and its half-chord, being as it were
suspended from the tip of the bhuja came to be called koti.l
The transition from the tiryanmdani and pars$vamani of the
Sulbasiitras to the bhuja and koti is thus reminiscent of a change
in the application of the theorem. The construction of the altars
and fire-places no more provided scope for the exercise of
mathematical talents. The elaborate ritual itself was giving
place to another form of worship. At the same time astronomy
was gaining in importance. And the theorem of the square of
the diagonal, the chief tool in the hands of the altar-builder,
again became the chief tool in the hands of the astronomer.?
Now it is really the equivalent of the trigonometrical identity
Sin? A 4+ Cosz A = 1.
or (r. Sin A)?2 4 (r. Cos A)? =r2.

6.10.1.  Proof of the theorem of the squart of the hypotenuse

In Bhaskara’s Bijaganita the rationale for the theorem is
given.
Ameaaeane freAt g awfaa
T § @] gAEAFIAEAAT ||
(Bijaganita, 129)
(Twice the product of the bhuja and koti combined with the
square of their difference will be equal to the sum of their
squares, just as it is so for two algebraical quantities.) The

1Koti also means a ‘curve’ derivatively. )
2The supreme importance of this theorem and the theory of proportion in
astronomy is pointed out by Nilakantha Somayajin in his notes on V. 17, in
the words
TREFATAT § s Syarert ase wgafd sarks |
(A.B. Part 1. p. 100)
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commentators Krsna and Gane$a make the method clear. Let
ABC be any right triangle. 4 triangles equal and similar to this
are put together as in the
figure with the hypotenuses
forming the sides of a
square. Then a small square
with sides equal to the
A difference of the bhuja and
koti will be formed at the
centre, the rest of the bigger
square having been filled up
by the four triangles. The
area of each triangle =1 bhuja
B : C % koti

Fig. 10
Hence area of 4 A s = 2 bhuja. koti
.. The bigger square = (bhuja ~ koti)? + 2 bhuja. koti
= bhyja® + kotiz.
Thisis a geometrico-algebraical proof. A fully geometrical
proof also is given by these commentators.!
Let ABC be a triangle right
angled at A. Let AD be
drawn perpendicular to BC.
Then the A s ADB, ADC and
ABC are similar to each
other.
B D C . from A s ABD and ABC
AB BD AB?
Fig. 11 Bc~ A OBP = gc
Similarly from A s ADC and ABC
AC?
BC

A

DC =

1Colebrooke (Miscellaneous Essays. p. 395) says that this proof given by
Wallis is in his treatise on angular sections (ch. V) is given by Bhaskara in his
Bijaganita.
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_ _ oe_ ABX+AC?
.. BD +DC = BC= “—p =
or BC? = AB? + AC?

6.10.2. The proof given in the Yuktibhdsa, i.e. of the Arya-
bhata school is purely demonstrational.?

The square ABCD with side
equal to the bhuja (a) and
the square DEFG with side
equal to the koti (b) are
placed side by side, with two
F E sides of each falling in the
same line as shown in the
Al B figure. From the combined
line GC, GH is marked off
equal to a. HF is joined and
the square HFKB on HF is
K constructed so asto be over
Fig. 12 the first two squares.

G D H C

Then HF is the hypotenuse of the triangle and square HFKB is
the square on the hypotenuse. The only parts of the two squares
a% and b2 lying outside this, are two right triangles FGH and
HCB and these are equal to the As FEK and AKB which lie
inside HFKB but outside the other two squares. Hence the
square on the hypotenuse = the sum of the squares on the bhuja
and koti.

6.11. Rational rectilinear figures

Another field in which the theorem of the square of the
hypotenuse was extensively used was the formation of rectilinear
figures with rational sides. The beginnings of the interest in
rational figures are discoverable in the Sulbasiitras. Apastamba,
according to his commentators, gives a general solution for a
right-angled triangle with a given side in his rules for constructing

'Y.B. p. 72.
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tight angles on a given side (a) with a cord whose length is
divided into % a and ?T a or % a andlé a

Brahmagupta gives general rational solutions for the isosceles
and scalene triangle, the rectangle, the isosceles trapezium
(dvisama), the trapezium with three sides equal (frisama) and
the quadrilateral (visama). All this is done by judicious juxta-
position of rational right triangles, the technical term for which
is jatya. This word also may have its own tale to tell, as if
the rational right triangle alone belonged to the highest or ori-
ginal species. It is quite likely that all rectilinear figures were
in one sense viewed as formed by the juxtaposition of right
triangles. The term used by Mahavira for the rational right
triangle is janya, which perhaps refers to the algebraical mode
of formation of the sides of these triangles from numbers, which
he calls bijas. The drpabhatiyam as it has come down to us is
a collection of rules and formulae more or less loosely connect-
ed and evidently intended to be supplemented by oral instruc-
tion and does not help us to gauge the extent of Aryabhata’s
mathematical knowledge. No section on rational figures is
incorporated in it. Still there is reason to believe that he was
acquainted with rational right triangles and the method of
constructing other rational figures out of them by juxtaposition.
The apparently meaningless direction for drawing triangles and
quadrilaterals “fawst 7 =wqg«s I woterw ' (Ganitapada 13)
becomes intelligible if we remember that these were generaily
formed out of rational right triangles.

6.11.1.1. Brahmagupta's solution for the rational isosceles
triangle is

glagfaragereaaigaiar faon am:

seg-aeraqmaieT fgaafagasifa:
(Br. Sp. Si. XI1.33)

(The sum of the squares of two unequal numbers is the side,
twice their product the altitude and twice the difference of the
squares of the unequal numbers is the base in an isosceles
triangle).
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Manifestly, the triangle is formed by the
juxtaposition of two equal rational right
triangles of sides m2 — n? and 2 m n and
hypotenuse m? -|- n2, the sides 2 m n being
made to coincide with each other.

Fig. 13

6.11.1.2 7o get a rational scalene triangle
T2gAe W) fgfreea: sRseg g |

faamfeasrer wonfas@meardam o o
(Br. Sp. Si. XII. 34)

(The square of an optional number is divided by two other
optional numbers separately. Halves of the sums of the quotients
and the optional number (i.e. the respective divisor) are the
sides of the scalenr triangle. The base is half the sum of the
quotients dimini-ned by the respective (divisor) optional number)
i.e. the sides are
m? m?2 m? m?
%(p + p),%(q +q) and } (5 p)+ 4 ( q a)

As Sudhakara Dvivedi explains, the
triangle is formed by juxtaposing two
right triangles with a common perpendi-

cular side = m, which becomes the
altitude in the combined scalene triangle.

Fig. 14
The problem then reduces to finding a general solution for
the right triangle with one side about the right angle given.
This is given in the next verse.
TeeE gy Ffadaaaea ag ad s
HAIAGIER & qeqseTies: &0 |

(Br. Sp. Si. XII 35)

(The square of the given side divided by an optional number,
diminished by the same and halved is the perpendicular side,
and the same quotient with the optional number added is the
diagonal in a rectangular figure)

i.e. the sides of the right triangle are

i (Eem)od 1 (% n)
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where a is the given side and m is any arbitrarily chosen num-
ber. For if b & c are the other two sides, c*— b%= a?
or(c—Db) (c+b) = a?

2

c+b—»?— _ & suttingc — b = m
= ¢_b T mbutimgc—>o=

a2
Thenc:é(}—n—}-m)

d at
and b=} (Tn — m)
Hence the solution for the scalene triangle will be
m? m?2 m? m?
— , — d — - =
3 (p +p) % ( q—f-q)an {%(p p) + %(q CI)%

In the solution for the right triangle if we put a = n and remove
fractions we get the usual general solution of the right triangle,

viz. 2 mn, m? — n2, m? 4 n2

6 11.1.3. To construct a rational isosceles trapezium

Baudhayana® notices that an isosceles trapezium can be made
out of two rectangles with one common side, one of these
being cut diagonally into two right triangles. The same know-
ledge is utilised by Brahmagupta in his general solution for the
rational isosceles trapezium, which is

et arg gegfafiea s
fogar Fveafier wlaqa foamaged

(Br. Sp. Si. XII. 36)
(The lateral sides are the diagonal of the rectangle. The square
of the base of the rectangle is divided by an arbitrarily chosen
number, then diminished by that number and halved. This is
separately combined with and diminished by the perpendicular
side of the rectangle. The greater of the two results is the base
and the less the face of the isosceles trapezium.)

Here the bhyja is chosen to be the altitude (p) of the trapezium.

Then the kofi = } (g: —m)= k where m is an arbitrary

1B, Si.1. 55 compare also Ap. SL. V. 7.
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number. Since p is also one side of the second rectangle, its other
ide — 3 (®° —

side =< } (n n).

The two rectangles are juxtaposed and then right triangles are
sliced off from either end of the resultant rectangle,

D c
——-

=3

|
|
J

3
A 1@~ e
Fig. 15

2
Hence the base = sum of the kotis == } (% —n)+k

2
and face = difference of the kotis = } (%— n) — k

and the flanks are the diagonals of the first rectangle.

6.11.1.4. To construct a rational trapezium with three sides
equal

The same device is used. But since the top also has now to
be equal to the diagonal of the first rectangle, a rectangle with
one side equal to the diagonal of the first
rectangle and the other side equal to one
side of the first rectangle is placed in the
middle, and halves of the first rectangle
[~ are- attached on either side of this. Be-
sides, the general rational rectangle is
Fig. 16 derived from the most general right

D ¢ u o
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triangle namely the one with sides m, n (i.e. with m and
n as isfas). Hence the rule
FuigffeaaasTeEs: agat fawter Rfesfeg
arggaferomaT gafesr qig = )
(XII. 37)
(The three equal sides are the square of the diagonal and the
fourth side is got by subtracting the square of the kofi from
thrice the square of the bhuja . .. . . . )
The general rational right triangle
formed from the general right
triangle is m? — n?, 2 m n, m? 4- n?
The 3 equal sides == m? - n2,
the square of the diagonal of the
basic right triangle.

L .
m.'.n"'

Y

T
:
i

Al
m -—-n

Fig. 17

base = m? +n? - 2 (m? — n?) = 3 m?* — n2
If this is less than m2 + n2 this will be the
shorter parallel side and in this case the two

right angled triangles are to be removed from
either end of the central rectangle (Fig. 18).

. -:-'__..--‘
22

6.11.1.5. To construct a rational quadrilateral
The method is indicated in

STAFAF AT qRFVTAT: AoFAIIaIN |

(X1I. 38)
(The kotis and bhujas of two rational right triangles muitiplied
by each other’s hypotenuses are the four sides in a quadrilateral
with unequal sides.)
How was the quadrilateral to be actually built up? Bhaskara 1I
gives the same prescription for constructing a quadrilateral.
Ganesa, commenting on this, says that four rational right
triangles are to be formed out of the two basic rational right
triangles by muitiplying the sides by the bhuja and koti of each
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other and the four are to be T C
put together, so that their D
hypotenuses from the sides of
the quadrilateral and the sides )
about theright angle combined
two by two form the diagonals,
ie.if m® — n?, 2mn, m? -+ n? A
and p? — q% 2 pq, p* + q? are
the two rational right triangles Fig. 19
the triangles out of which the quadrilateral is built up are
1) (m®—1n?) (p®— q¥), 2mn (p* — q¥), (p® — q¥) (M2 + n?)
2) (m® — n%)2pq, 4mnpq, 2pq (m? + n?)
3) (P* —@(m® —n%), 2pq (m* — n?), (p?-+ q2) (M2—n?)
4) (p* — g% 2mn, 4pqmn, (p* +-q?) 2mn.
But one wonders whether this is the procedure intended by
Brahmagupta and Bhaskara, both of whom speak of multiplying
the sides of two rational triangles by each other’s hypotenuse
and do not even hint at the need for four triangles. The anony-
mous commentary on the Tantrasara of Narayana (see 5.5.2)
which contains much of the mathematics and astronomy of the
later Aryabhata School, quotes the above mentioned Lilavasi
verse and explains how the quadrilateral is to be built up. Two
different rational right triangles (say 3, 4, 5 and 5, 12, 13) are
selected and from them two other triangles are obtained by
multiplying the sides by the other’s hypotenuse (i.e. the new
triangles will be 39, 52, 65, & 25 60, 65). The two new
triangles will have the same hy-
C potenuse and can therefore be
Juxtaposed with their hypote-
nuses coinciding. Then one
diagonal will be the common
hypotenuse which will also be
the diameter of the circumscrib-
ing circle. When the sides are
interchanged other cyclic quadri-
laterals are obtained. In the
position of the sides in which no
diagonal is diameter, we get the
Fig. 20 diagonals given by Bhaskara.

D
7_‘-—‘&\
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6.11.2. Sridhara and Aryabhata II do not treat of rational
figures in their extant works. Sripati gives Brahmagupta’s
solution for the rational right triangle with the bhuja given.

geer W acpfafeevadarigar sifewat awar |
SPVISRA AFegdifaviay aa: o afad faew: o

(Si. Se. p. 87)
(The bhuja is given. Its square divided by an optional number
and then diminished by the same number and halved is the koti.
The same quotient combined with the above divisor is the
hypotenuse. The learned have thus derived the jarya in
geometry.)
The formation of the rational cyclic quadrilateral is also dealt
with (Si. Se.’p. 87).

6.11.3.1. Mahavira coming between Sridhara and Aryabhata II
accords a very full treatment to rational figures under a separate
heading Janyavyavahara. First of all he gives the general
solution for the rational right triangle which is to be the basis
for all that follows. ’
Fifaq: Fife: gt fafoat wag ag:
FraTa:l FOAEATAGIATIE ||

(G.S.S. VII. 90})
{The difference of the squares is the upright side, twice the pro-
duct is the horizontal side and the sum of the squares is the
diagonal in a rectangle formed from bijas, elements.) As Dr. Datta
points out,2 Mahaévira indicates, for the first time in the known
history of Indian mathematics, the method of arriving at the
results he gives. Any two integers m and n are to be chosen
as the bijas or elements from which the rational right triangle is
to be produced.

Then the solution for the triangle is m?— n% 2mn and m?-+n2.
It is noteworthy that Mahavira, like Brahmagupta and earlier
the Sulbasiitras, speak of the rectangle, not the right triangle.

1The use of samdsa here in the sense of combination is reminiscent of the
Sulbasitra practice.

2Mahavira’s treatment of rational triangles and quadrilaterals—Bull. Cal.
Math. Soc. 1930. p. 267.



The Triangle 143

The solution! for a rational right triangle with a side contain-
ing the right angle given, is the same as that of Brahmagupta.

Rational right triangle with the hypotenuse given is solved in

R AT RTeaty 7 fife-q
(G.S.S. VIL. 97)

(Or the root of the difference of the squares of the hypotenuse
and an optional number and the optional number itself are the
bhuja and the koti.) 1M ¢ is the hypotenuse and m the chosen
number, the sides are 4/c? — m2, m and c. This is a rather un-
satisfactory direct application of the Pythagorean theorem.
Unless m is suitably selected, the triangie may not be possible
at all, much less rational.

6.11.3.2. Rational isosceles and scalene triangles

The methods? closely follow Brahmagupta’s. But Mahavira
lets us know how the bijas for the two rational right triangles
which are to be juxtaposed and therefore have to have one side
about the right angle the same, are to be found.

6.11.3.3. Rational isosceles trapezium

The method? is essentially the same as Brahmagupta’s. But
where Brahmagupta gives the sides in terms of the sides of one
rectangle and an optional quantity without explaining the
method of formation, Mahavira makes it clear that two rect-
angles are to be used and tells us how to get bijas for the two
right triangles, so that they may have a common side. The
bijas for the second triangle are S79e @s@1g gIIFH i.e. the rational
integral diviser and quotient of half the horizontal side of the
first janya. That is, if m & n are the bijas of the first triangle,
so that the bhuja is 2 mn, the bijas for the other will be

mn
—- =qand p.
b q p

1G.S.S. VIL 974
2GS.S. VII 108} & 1103,

3G.8.5. VII 993—1003,
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6.11.3.4. Rational trapezium with three equal sides

AT ST AT A AT ANIGTRIRATH |
agaeifert = fram 7 faww=ged o

(G.S.S., VIL. 101%)
(The quadrilateral with three sides equal is to be formed like
the isosceles trapezium from two rectangles formed (1) with the
quotient got by dividing the area of the given rational rectangle
by the difference of its bijas as multiplied by the square root of
its bhuja, and the divisor and (2) with the bAuja and koti of the
first rectangle as bijas.)
The solution is the same as Brahmagupta’s, whose wording tells
us more clearly that the method is to have two rectangles such
that the diagonal and one side of one are respectively equal to
the two sides of the second.

6.11.3.5. Rational cyclic quadrilateral

The only difference between Mahavira’s solution and Brahma-
gupta’s is that Mahavira seems to multiply the sides of the two
rational right triangles muitiplied by each other’s hypotenuse,
again by the shorter diagonal. The purpose of this operation
is not clear.! Narayana Pandita gives the same solution as
Mahavira. Commenting on this, the editor of the Ganitakaumudi
says that all the other elements of the quadrilateral, like the
altitudes, the abddhds and the circum-diameter, when computed
in the quadrilateral as solved by Brahmagupta and Bhaskara,
have the smaller hypotenuse as denominator, and so, to avoid
fractions, Narayana recommends the multiplication of all the
elements including the sides by the smaller diagonal. This is
plausible and the first to solve the quadrilateral with all ele-
ments integral was perhaps Mahévira.

6.11.4. Bhaskara’s enuncijation and elaboration of the theorem
of the square of the hypotenuse is intended to make its useful-

WIr 10‘3;2 and 105 %-107%. Dr. Datta does not find any supefluous opera-
tion in Mahavira’s prescription, but remarks that though Mahavira follows
Brahmagupta’s method, his solution differs. He also credits Bhaskara with
improving Brahmagupta’s result, which improvement I fail to see.
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ness in solving everyday problems and the problems of astro-
nomy clear. At the cost of some verbosity he shows how from
any two sides of a right triangle the third can be calculated. In
his treatment of rational figures, which he confines to rational
right triangles, he has a new solution for the sides of a right
triangle with one side containing the right angle given.

T2 sserg e freTifiseer edafamaaaa |
FMfe: qas JSoT AT 9T wIeratad g s o
(L. 141)

(The base is given. This when multiplied by twice an optional
number and divided by the square of that optional number
diminished by one gives the upright (koti)side. That (koti)
separately multiplied by the optional number and diminished by
the bhuja is the hypotenuse. This is the rational right angled
triangle (jatya). If a is the given side and m any optional
Zam

m? —1

number the koti is

2am?

mi—1

Bhaskara’s commentator, Suiraydasa (16th century) explains how
this solution is arrived at.! One solution of the rational right
triangle is given by 2n, n2 — 1 and n% 4 1. Let a similar right
triangle have base - a. Then its upright side

and the karna is

e o Zan
Toi T i

Again
n X the koti of the first triangle - 2n% = (n? - 1) + (n2-+1) =
its base -} its hypotenuse ... n x the koti of the 2nd triangle =
its base |- its hypotenuse ... Its hypotenuse - n X koti — base
n?—1
By the same principle, if the hypotenuse ¢ is given, the solu-
tion will be

1vide H.C. Bannerji—Colebrooke’s Translation of the Lildvasi with trans-
lation and notes, under 139.



146 Geometry in Ancient and Medieval India

2cn 2 cn?

T ¢ T

(Lil. 144)

This solution is a great improvement on Mahavira’s solution.

Bhaskara does not deal with other rational figures as such,

though the solution of the rational cyclic quadrilateral is given

in connection with the calculation of the diagonal of a cyclic
quadrilateral.

6.11.5.1. At the very beginning of his section on jatyaksetras
Narayana Pandita makes the method to be followed very clear
with the words.
ot AfaTE AT v ST ged: |
gracfase wed #ifesgau aar T4t
(G.K. Ks. Vva., 78)

(The square of the bhuja is equal to the difference of the squares
of the hypotenuse and koti. The difference (between the
hypotenuse and koti) should be assumed to be equal to an
arbitrary number. Then the koti and the hypotenuse are to be
calculated from these)!

i.e. a2 =c2 — b2

Letc—b—m

a2
Then c+b = —
m

ce=1E 4 m

and b — %(-fg—m)

Narayana himself explains the calculation in his attached
notes. In verse 76 Bhaskara’s solution for a rational right

2an  2an?

. . . . - B . iven.
triangle with a given side viz. a, oD o] @ I siven

Verses 80-81 give the solutions for the right triangle with
the hypotenuse given. In verse 83 Narayana gives a new garb,
to the old solution 2n, n?—1  n?4-1. His solution is m2—n?

1The method has been already explained conjecturally in connection with
Brahmagupta’s solution,
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—_ . 2__ —_ 2
m—m (CppoP 1), (mon) (@) in which (m-n)
replaces n and the whole solution is multiplied by (m—n) and
divided by two. The mode of derivation is to assume that one
side b in the triangle is equal to m2-—n2. This solution is much
more general than 2 n, n2—1 and n24-1.

6.11.5.2. The construction of rational isosceles trapezia in the
Ganita Kaumudi follows the principles laid down by earlier
mathematicians. But the author has a new type of trapezium,
karnabhiisama in which the diagonals are equal to the base. The
rule for its construction comprehending many types of trapezia
is being quoted in full.
gfaarg): sferraataiam gag gafa)
qeFIfEHEt FINEe TaRIAg T IAREL o
saaeas areat agee faawags wafa
s fesaTsi fawd av FvisaH arfa )
Frgeiferaregt Jirgreams 1 933w |
frawageafafrar gewuidft aeafy |
(G.K.Ks., Vya. 88-90)

(The sum and dlﬁ‘erence of (1) the diagonal and bhAuja and (2)
the diagonal and kofi of a given rational rectangle is multiplied
by the bhuja and koti separately. The square root of these pro-
ducts are two sets of bijas. The bhuja and koti themselves form
another set of bijas called the prathama (first). The trapezium
composed out of the two rectangles got from the prathama and
bhuja sets of bijas will have three sides equal; the one from the
rectangles with the prathama and koti sets of bijas will either
have three sides equal or else have its base equal to its diagonals.
The trapezium from the rectangles with the bAuja and koti sets
of bijas will have its base equal to its circum diameter. The
bhujas, diagonals etc. are to be obtained according to the instruc-
tions given for the isosceles trapezium.)

From a given rectangle with sides and diagonals a, b, ¢ three
sets of bijas are obtained.

1. Bhuja set. . . 4/(c+a)a and 4/(c—a)a

2. Kotiset . ..+/(c+b)b and 4/(c—b)b
3. Prathama set. . . a and b.
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By forming rectangles with these bijas and combining them
two by two by the usual method for building up trapezia, three
kinds of trapezium are obtained

a) With three sides equal from (1) and 3
The jatya obfained from (1) will have as sides and diagonal
(c+aj)a—(c—a)a=2a2
2 V(cta)a. V(c—a)a=2 4/a% ((E_a?)—=2 +/abi=2ab. and
(c+a)at(c—a)a=2ac

The jatya obtained from (3)is az—be, 2ab, a?4|b?

a? b?
*

*4s
=

Y

2at aip?

Fig. 21 Fig. 22

Hence the face of the trapezium =2a®—(a?—b?)

=a2-b2==the flanks.
Therefore we get a trapezium with three sides equal,
(b) The jarya from the kofi set of bijas will be 2b2, 2ab, 2bc
This combined with the jatya a®—b2?, 2ab,
a2+b? will give a trapezium with its base
equal to its flanks.

If the diagonals of the trapezium are to be equal to the base,
the diagonal of the smaller rectangle viz. a24+b2 is to be the
diagonal of the trapezium and then the diagonals of the bigger
rectangle which are equal to 2bc are to be the flanks. For this,
triangles equal to half the bigger rectangle (i.e. ACD & EC’F)
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are to be removed from
g cither side of the combined
rectangle.! Then naturally,
the flanks being greater
e = than the diagonals of the
= trapezium, they cross over
each other and the trape-
zium takes the shape of
two isosceles triangles join-
A B E ¢4 at their apexes and the
Fig. 24 upper triangle is negative.
Narayana has provided for
such a trapezium, most probably because in his section on the
geometrical representation of series (Sredhiksetras) such trapezia
make their appearance. As he hasexplained in that context,
the trapezium takes this shape (of the kartari-scissors as Nara-
Yyana puts it) because its face has a negative value.
(¢) When the rectangles from the bhuja and koti sets of bijas
are combined, the base will be 2a24-2b2 and the circum-diameter

__product of the diagonals of the jatyas
- common altitude

_ 2ac2be
~ 2ab

Hence the base=the circum-diameter.

=2c2=2(a%}b?)

6.11.6. The treatment of the formation of Brahmagupta’s
rational cyclic quadrilateral by the Aryabhata School has been
already dealt with. For the rest, the schooldoes not devote much
attention to rational figures. But the way in which the Kriya-

IThere is some ambiguity in Nariyana’s own notes on this trapezium. He
says (G.X., PartIL. p. 108).

mﬁmﬁmﬁmwmﬁfmnwzwﬁﬂmnqﬁﬂmﬁ
LS WA | R0 Re T Yo Yo T3 998 198 W@ Rq89/9R
W o

Then two right triangles of sides 119, 120, 169 and 5, 42, 13 are shown. On
the other hand the right triangles (or rectangles) he uses to illustrate the
other types of trapezia are the three got from the triangle 3, 4, 5 by the
method given in his rule i.e. 24, 32, 40; 18, 24, 30 and 7, 24, 25.
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kramakart interprets Bhaskara’s formulas for the formation of
rational right triangles deserves more than a passing notice.
Commenting on

Teet eiseng fpree ATy wreer FAFfagamATan |
Fife:qar seom qeiar w9t wdgegfae g st o
(L1l. 141)

the author of the Kriyagkramakari says—<“Here by the word ista
(chosen number), the Sara (arrow) is meant. Twice the koti
(perpendicular side) is to be multiplied by that. And if this is
the bhuja (base) divided by the Sara, twice the koti multiplied by
the fara should be divided by the square of the $ara or twice
the koti by the simple sara. Here, primarily it is the sum of the
koti and karpa which is to be divided, but twice the kofi is
actually being divided and this is less than the sum of the kofi
and the karpa by an amount equal to the sara. To decrease the
divisor proportionately, one is being subtracted from it. Hence
is it said ‘divided by the square of the ista diminished by one’.”

That is, the K.K. gets the sides of a rational triangle with one
side given as follows. If a, b, are the sides about the right angle
and c the hypotenuse,

_(c+a) {(c+a)—(c—a)}
L

(c+a)—(c—a)
b

b % c—a
c—a c—a’ c+a
2a . b
= — tt: =m
popny (putting P )
m—m, cra
_ 2am
m?—m? c—a
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_ 2a.m ___2am
o, __b¥c—a) —mz— b2
(c—a)i(c+a) cz—a?
_2am  2am
T, br om2—I

2

. b
And since C+a=c—a

If we consider the triangle as made in a quadrant by the sine-
chord (bhuja), cosine-chord (kot?), and radius-hypotenuse (karna)
bhuja b

- =— i3
Sara c—a

= b.m, c=b.m—a.

of an arc, c—a=height of the arc (fara) and

the ista, the chosen number.
Or if, the K. K. goes on to say, the difference between the
karna and the kofi is accepted as the isfq (m).
karna — koti = m
karna® — koti?

karna +- kofi = karna — koti
- bhuja?
T m
i
Adding and halving, karna = } bh% + m)

i (e

. . a®
Subtracting and halving, kofi = } (.a — m)

This is the second solution given by Bhaskara in the next verse
(142). Thus both rules are formulated, according to the K. K.,
in relation to the right triangle in a quadrant formed by the
sine-chord and cosine-chord of an arc and its radius-hypotenuse,
The solution when the hypotenuse is given, contained in Lil,
144, is also derived by the author of the K.K. similarly with
bhuja b
fara- % a
Again commenting on
geergfatgedt sifedni= G
AT FOlTATR O §) Lil. 147y
The KriyGkramakari says:
RIAITHSZIE T goed gwamr qumifemutaramady fair: savy
(K. K. p. 507)

as the chosen number, m. (p. 497, 498)
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{(Now in the context of istas the special features in arriving at
the bhuja, koti and karpa in a circle are shown.)
Then after explaining the literal meaning of the sitra “Here
" since the two bhujas are equal, their kofis also should be equal.
Hence the reciprocal products of the bhuyjas and kotis also.
should be equal. The bhuja and koti are the ista gquantities.
Hence it is said istayordhatir dvighni ... multiplication of the
chosen bhujas by the reciprocal kotis is, anyway, to be done in
addition and subtraction in a circle. That is why Madhava
has said
S gyea fAsaetfEsrat - -

(quoted on p. 102)

If so, whyis it not divided by the radius ? To get integral
numbers. Where do we get such bhujas and kotis? In the circle
whose radius is the square of the radius of the circle. Hence it
is well said iszayorahutir dvighni. Here how will the bhuja be
known? Since these bhujas and kotis are to be mutually sub-
tracted and the reciprocal kotis are equal (to the bhujas), these
are to be squared. Their difference will be the bhuja in that
circle. That also will be rational because it is in the bigger
circle. Hence it is said the base is the difference of the squares.
Hence the karpa will be the sum of the squares of the two
istas chosen first. And all these will be rational.”

Here the author of the XK. K. gives a geometrical method for
constructing the rational right triangle given by Bhaskara’s
solution. A right triangle is to be formed with base and per-
pendicular side equal to any two
chosen numbers m and n.  The
circle of reference for this sine-
cosine triangle (OAB) will be the
one with the point O as centre
and the hypotenuse OB as the
radius, Draw another circle
with the same centre and OD =
OB? as radius. On the smaller
circle mark off an arc XC=
2BX. Join OC and produce it
to meet the outer circle in B'.
Fig. 25 Draw B’A’ perpendicular to OX.
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Then OB’A’ is the rational right triangle corresponding to
the solution 2mn, m? — n2, m?-n2

Here also the rationale as explained by the KK, is
trigonometrical. The sine and cosine chords for double the arc
got by applyingthe summation formula for sine and cosine will be

2mn d m? — n?
AL U Lt L . . ,
A/ n? and T T To rationalise these and the

hypotenuse V/ m?® - n?, they are to be muitiplied by \/m?+ n?
That is, if the radius is squared twice the same angle will have
a rational sine-chord and cosine-chord and the hypotenuse or
radius also will be rational. Hence the construction.

The school to which the K. K. belonged has a distinct bias
towards geometry especially towards chord geometry and it
succeeds well in linking these results belonging to the sphere
of the Theory of numbers to chord geometry.
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THE CIRCLE

7.1. Indian geometry after the Sulbasiitra period grew up for
the sake of the circle, the celestial circle. The Sulbasitras
attempt to square the circle and to circle the square (if the
expression may be permitted). But the methods are but rough.
The values of the ratio of the circumference to the diameter,
implied in these methods are 3.004,3.0883, and 3.0885, slightly
better than the ancient and very rough value 3.

The ancient Jainas did much more with the circle. They were
aware that there is a fixed ratio between the diameter and the
circumference and that the circumference multiplied by one-
fourth the diameter is the area of a circle. The Siryaprajfiapti
records the use of 3 as the value of = only to condemn it, while
the approved value is 4/ 0. In the other early Jaina works

like the Jyotiskarandaka and the Jambudvipasamdsa of Umasvati,
= is invariably equal to 4/ T, which value holds the field right

up to the time of Bhaskara-II, though Aryabhata I has a very
good value for =. The probable origin of the value /10 has

already been discussed. Amongst the Jainas too Virasena
author of the Dhavala Tika on the Satkhanddgama gives a better
value for =.
=T Qvew ford Wremafed faeretdaaT )
sare faviford qemmefy agway qeaw

(Satkhanddgama Vol. 1V, p. 42)
(When the diameter multiplied by 16, combined with 16 and
divided by 113 is again combined with thrice the diameter (the
circumference) will be most exact.)

164 -+ 16
113
stant term 16 in an expression for the circumference in terms of
the diameter is illogical and if that 16 is removed we get the

well-known and close approximation for =, %

This will give the curious expression -+ 3d. The con-



The Circle 155

7.2. Aryabhata’s value of =, though well-known, bears quota-
tion again.

g fas wawss grefeewT qgaTn |
sgagafasrraeaTa=t FaTfeong: 1
(A. B. Ganitapada 10}

(The proximate value of the circumference for a diameter of
20000 is 62832.)

. 62832
1.6, ® = m = 3.1416

The value is quite a good one and yet Aryabhata recognises that
3927 .
it is dsanna! only, a near approximation. Bhéaskara’s 1250 1S

Aryabhata’s value? with the common factor 16 removed from
the numerator and denominator.

1Commenting on this word Nilakantha Somayijin has a fine disquisition on
the meaning of incommensurability. ‘g qEateEdl T EEEFIIERT |
I | TEUT TR | @ 7 AT A A v fra: |
Wawm: ofifa: g arme mr @ 1 W o9 dwm: afkfafraraaEy @a-
HTAY SyrEtsy aTagd ©F, TEFAT AT AamapeEt wafy 9 fRaaed
1Y | WErAwsATT TATIerEgad g7 ey | favmmae g wafe v wefafy
Tl

“Why is this near value given here the real value being left out ? I will
explain. Because the real value cannot be given. By the measure with
which the diameter can be measured without a remainder the circumference
measured by the same will certainly leave a remainder, Similarly the unit
which measures the circumference without a remainder, will leave a remain-
der when used for measuring the diameter. Hence the two measured by the
same unit will never be without a remainder. Though we carry it very far
we can achizve smallness of the remainder only, but never remainderless-
ness. This is the idea.”

®The Kriyakramakari thinks that this is a gross value and says ﬂ%ﬁa\
& argera? afefamfer gt sy sad wisafRgy favRy wrimgst: rr&ﬁsr
ggen: wang 9 giafaamfima: o

(Others have a varijant reading that the diameter x i—§ is the very accu-
rate circumference. This is the reading approved by people who know what
mathematical reasoning is.)



156 Geometry in Ancient and Medieval India

7.3. The mode of arriving at this value was substantially the
same as that for getting the value /10 but instead of stopping

with the inscribed polygon of 12 sides, the number of sides was
doubled till 384 was reached. Ganesa suggests that the side of
the 384-sides-polygon inscribed in a circle of diameter 100 was
calculated by repeated application of the formula

c s 4~ 8L\
A B 8. J::+ (r- 4
D

where S, and 8,, are the sides
of the polygon of n sides and
2n sides respectively inscribed
in the circle, the side of the
o inscribed  hexagon  being
known to be equal to the
radius. The Yuktibhdsd em-
ploys for the same purpose
the method of the escribed

~—— — polygon, starting from the
square and proceeding upto
Fig. 1 the polygon with a very large

number of sides.t

Let ABCP be a square with
side = d, the diameter of the
circle. Let the east-west line
*  XOX’and the north-south line

YOY’ be drawn passing through
x o % the centre O of the circle and
cutting the square into four
smaller squares. Let OC and
YX’, the diagonals of the
square OX'CY be joined.

c Y ¥  Along OC set off OD=YC and
Fig. 2 draw the perpendicular Y,DX;
Then from the similar triangles YEC and Y,DC
Y,C CD
YC TEC

1y.B. pp. 74-76
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CD.YC
EC

And then P C — 2Y,C = the side of the octagon which will result
if triangles similar .to CY,X, are cut off from the four corners
of the square ABCD. Y,Y is therefore a half side of the
octagon.
. OY; = 4/ OY? 4 YY,2 can be calculated.
Let YE, be perpendicular on OY,
Then OE2? — E, Y2 == OY2 — YY?
ie. OY, (OE,—E, ¥)=0Y2—-YY,?
2 2
or OE,—E Y, = oy _YY, OYTYI
Hence E,Y, can be calculated. Let OY, cut the circle in D,.
Y, D, is drawn perpendicular to OY, touching YC in Y,.

Y,C =

(EC=10C and therefore can be calculated.)

Then, as before, from the similar triangles, YE,Y, and Y,D, Y,
Y,Y, can be calculated. Then the side of the polygon with
16 sides = 2YY, — 2Y,Y,.

In this way the number of sides of the polygon can be doubled
and the corresponding side calculated till the number of vertices
is very large and the polygon becomes a circle.

7.4. In these two methods, by increasing the number of sides
of the polygon any desired degree of nearness can be achieved
though the exact ratio can never be arrived at. A remarkably
close approximation credited to Madhava* by Nilakantha
Somayajin and others is in word-numerals.

faaa R fggarmAfrnanaruarga: |
Jafagdfay afafaza aftfmmfeg sngd o)

The measure of the circumference in a circle of diameter
900,000,000,000 is 2,827,433,388,233.

(K. K. p. 668)
2,827,433,388,233

ie. w™=

1 4.B. Ganitapida p. 42.
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The Kriyakramakari gives another as still closer.

FUAN Y AFATAG AfeEEg - |
freafefagiviay ggew: afcfutd o

104348

= m=3.1415926539211 S,

ie. =«

The Karanapaddhati (VI. 7) gives 31,415,926,536 as the
<circumference for a diameter of 10,000,000,000. The commen-
tary published in the Madras edition of the Karanapaddhati
(Madras Government Oriental Series, No. 98) shows how
grosser approximations can be obtained from this by writing
down the results of the continued division of the circumference
and diameter and then working back with any desired number
of results. The values of = thus obtained are

3 22 333 355 67783 68138 408473

1T %37 106 113 21576 21689 13002 o (P- 176)

7.5. The first of these methods is based on the theorem that
the side of an inscribed hexagon is equal to the radius of the
circle. This theorem must have been knownin India quite
early. Aryabhata enunciates it.

afkd: agwrTear faseeard 7 a1 gear
(A. B. Ganitapada, 9)

(The chord of one-sixth of the circumference is equal to half
the diameter).

The proof is given by the commentator Nilakantha as also
by the author of the Yuktibhasa.l

Let XOX' be a diameter of the circle with O as centre
and OX’ as radius. Mark a point A on the circum-

1y.B. pp. 143 -144,
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Y ference such that chord
B A X'A — OX’. OA, X'A are
joined. Then OX’A is an
equilateral triangle with
side == OX’. A _ similar
_ equilateral triangle is con-
X~ D X  structed on OX also with
the vertex B on the cir-
cumference. Let AD and
BE be drawn perpendi-
cular to OX’ and OX from
Vi A and B. Then since OAX’
is an equilateral triangle,
Fig. 3 D is the middle point of

OX’ Similarly E is the middle point of OX. '

1 1 , 1 , diameter
ED=AB=—5~ (0).¢ +TOX =—2~X0X = 5
i.e. the semicircumference XBAX' is divided into 3 parts whose
chords are all equal to half the diameter. Hence the chord of
the sixth part of the circumference is equal to half the diameter.

Aryabhata II gives -2—72—as the sitksma (accurate) value of =,

whereas Bhaskara gives it as the sthila (gross). To the author
of the Kriyagkramakari it is atisthitla, very gross.!

7.6. Series for n

In addition to the methods of inscribing and escribing
polygons, the Aryabhata school uses a method of integration
for getting values for = in the form of an infinite series. The
series in its basic form is contained in
sy anfefafey svgd sarmaTaivgy
farufafrmderas =o & qgaswE gaiq |

(Tantrasamgraha quotation in the Y. B. p. 99)2
(In the diameter multiplied by 4 and divided by one, decrease
and increase should be made in turn of the diameter multiplied

1K.K. p. 668.
2A verse to the same effect occurs in the Karanapaddhati also (VL 1)
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by four and divided one by one by the odd numbers beginning
with 3 and 5)

i.e. circumference == 4d — iq—i— iﬁl — —4ii+ ce e
3 5 7
p B ® ® =® R
A0 W
! 4 kﬂ £ '?1
4 %
o
&,
/
/
0
Fig. 4

The process of arriving at the series is a blending of geometri-
cal reasoning and ingenious methods of summing up regular
mathematical series.! The circle’ is inscribed in a square of side
== the diameter of the circle, which will then touch the middle
points of the sides of the square. A quarter of the circle with
the circumscribing square is shown in the figure. The half-side
PP, of the square is divided into a number of very small equal
parts PP, P,P,, P,P, .. .. Py, P.. The points P,P, ... . P,
are joined to the centre O, the joining lines OP;, OP, . .. OP,

1Y.B. pp. 85-99.
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cutting the circumference in Q;, Q,,. .. Qa. Theselines OP,,
OP, ... are termed karnas by analogy with OP, which is a
diagonal. From P, P, . . . P,._, perpendiculars PR,, P;R,. . . are

dropped on the next karpas. Similarly from Q;, Q, ... also

perpendiculars Q,S,, Q; S, . . . are drawn.
Then from the similar triangles OPP, and OPR,
PR, OP
PP, OP,
_PP,.OP_ Arr
or PR, = ~—OP, — OF,

(Where r is the radius of the circle and A r is the length of
each small division on PP,). Again from similar triangles
P,R;P,and POP,
PR, OP
PP, OP,
OP.PP, Ar.r
OP, ~ OP,
Ar.r
oP,

r.r
PR, = %P‘

ie. PR, =

Similarly P,R, =

'P”“l Rn = _Aé%r. . . . I

Furthermore, triangles OP,R, and OQ,S, are similar.

. QS, _0Q
PR, OP,
P;R,.0Q,
OP,
Ar.r r
OP, " OP,

_ AT
— OP,.OP,

Or QIS’ =

(Substituting from results I)
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2
Similarly  Q,S; — _OIT,%I%-

AT

Q% = 5P, OF,
Now PR,, Q;S;, QS,,......... Qn—; S, are the half-chords (sine-
chords) of the arcs PQ,, Q,Q,......... Qs Qn. If the arcs are

sufficiently small, i.e. the number of divisions on PP, is sufficient-
ly large, the arc can be taken to be equal to the half-chord.
Hence arc PQ,,

= } of the circumference.

— PR, + Q,S; + Qg +vovrvrerans + Qu_y Sn

_Arr, Arr? Ar.ar? Ar.r?
= op, T op,.op, op,0p, Tt ob,_.OP,

Ar.a? Ar.a? + Ar.r2

+5p oF, + TN LA + 2 OP,_.OF,

Here since A r is assumed to be very small, OP, may be taken
to be almost equal to OP,.
ie. OP,—OP, >0
or (OP,—OP,)* = OP;? 4 OP,2—20P, . OP, > 0
or OP2-4 OP2— 2 OP,.OP,
1 2
°f ©OFP,0P, ~ OPj | OP;
__ 2(OP24- 0P}
~ (OPg2 4 OP,2)y
2 (OP2 4 OP,Y)
4 0P2 x OP,2
= i (o3 * oF5)

. Circume* Arr?  Arg? At Ara?
- =i (e +orr) T (Rt +-Gpr )t

Arrz | Aro?
.o + * (OPzn—lT OP";
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o fArT.2 At Ara? Ar.r2
- ;,( m—+ opr + Sopr o + O——-Pzn_l)
Ar.r2  Ar.a® Ar.r2>

+i(Torzt"opgt - - - - tops

The difference between the two quantities within the brackets

Y (A;.rz Ar.r”)

OP,2
2
-~ 1(ar— Azif ) (since OP,*=OP*+PP,)
A_zf — A4_r = ATI" which is negligible
Circume Ar.r*  Arr? Ar.?
§ ~ OPF T OPE T+ - T opgz

In these terms the denominators, (that is, the squares of the
karnas) OP2, OP ,%......are unknown. To eliminate these un-
knowns the denominator can be made the known square of the
radius. The excess in the quotient resulting from the use of a
smaller denominator is the quantity got by multiplying the quoti-
ent by the difference of the real denominator (karna®) and the
assumed denominator (r?) and dividing by the real denominator.
To eliminate the unknown karpa? from this subtrahend, it can
be subjected to the same treatment. Thus by the repeated sub-
jection of the subtrahends to the’ same treatment an infinite

series involving the radius only is got from each of the terms.

2 —
ie. Ar.r _Arz.r2 mrzAr(OPla %)

[0) J T 2. 0P;2

o Ar. (A2

= Ar—rSg OP2

= AT — (_A_:X_ r2-}r2 (Ar)** gﬁ(’;_‘;’)

T . OP,
3 5 ?

= Ar— (Ar:) +(Arf) _(Arsr) A
At Ar.rr Ar(OP2—r?)
OPZF ~ ~ & 12.0Pg

= &1 =0pp
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=AT~— AT(ZAr)’+Ar(2Ar)4
r2 I
Similarly A(;I;l: =Ar _AT (iA 1)? + JaNy (E‘Ar)‘__
2 4 2 AAD
A(r)Prz —pr—81 (r,A Py ar LA” —

Arr’* —Ar Ar(nAr)’ Ar(nAr)‘
OP,? 2

. c1rcum8ference —Ar { (A r)’ | (A r)‘ ........

§

+af - G000,

.....

pafio@anL

n ar-55 g(Ar)’+(2Ar)’+(3At)’+ ............ }
-ér.—{(Ar)‘+(2Ar)‘+(3Ar)‘ }
%}(Ar)°+(2Ar)°+(3Ar)°+ §

I+ 1 +

To proceed further, one has to know the sums of the quanti-
ties within the brackets, i.e. the sums of the squares, 4th powers,
6th powers (vargasamkalita, samacaturghdata-samkalita, samasag-
ghatasamkalita) etc. of the parts of a whole, which increase gradu-
ally by an infinitesimally small part. Therefore, as a necessary
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digression, the author shows how such parts raised to any
power can be summed up. First, the series in the first degree is
taken up

ie. theseries Ar+2ATr+... ... ... +0 AT

If all these parts were equal to r, their sum willbe r 4+ r 4 ... ...
If we assume A r = 1 unit there will be r terms in the series i.e.

n=r. .. Thesumofr+r<4.. ... ... =r.r=r1r?

Writing the original series inversely underneath this and sub-
tracting we get

O+ ArT4+2AT4 ov on. e 4 (r — 1) Ar=r?— original
series i.e. original series — r = r? — original series
r’4r _ r(r+])
2 - 2 .
If A r=1 unitis chosen sufficiently small, r 4 1 will not be
appreciably different from r

original series=

Hence ATH2A 1+ .. .. 4r= _fg.
Similarly it can be shown that

3

(AT + QAD + @A ... =—

(Am+aam+@my+mmm.”=;

and so on
circumference AT " Ar r
Hence —-—-—8———=n.Ar—T - 3 + 3 ] 5
AT r’
_— '—rc—- T .........
r r r
=l‘—?+-§—~— 77—-{- ce ee
. 8 8r 8r '
RS cu-cumferenge = 8r - T+ - —7——+.... .

4d 4d 44
— 4d__3—-+ -—g- — T+......
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The Aryabhata school had worked out a method of applying a
correction to the value got by taking any number of terms and
with its help found the circumference in the katapayadi system
to be avemarzTawgfaaa! for a radius of MATAAATATTAY
ie. 31,415,926,536
“°10,000,000,000
From this they canuld get many other approximations to the
value of = (see 7.5 above)
This series for }th of the circumference can be manipulated to

yield several other series. Thus by calculating the length of -:—Zth

of the circumference instead of }th we get the series!
2 2
C- le d - Vud R~
By grouping the terms dlﬁ"erently new series have been derived

outof C — 4d — 3+ﬂ_ ______
1. C~4d—4d(»~—ﬂ 4d(7___<
1 1
2. C=28d (22 ite—1 =1t )
1 1
3. C=4d—8d<42_1 b T+ )

D.E. Smith in a foot-note on page 309 of his History of Mathe-
matics Vol. II notices C. M Whish’s article on the Hindu
quadrature of the circle, but still does not mention these in-
finite series for = discovered in India latest by the 15th century,
while he mentions (pp. 311-312) those discovered_by John Wallis
(1655 A.p.), Leibniz (1673). Abraham Sharp (c. 1717), John
Machin (c. 1706) and Matsunga Ryohitsu (1739). The Yenri or
Circle Principle of Japanese mathematics made its appearance
in the 17th century, It will be interesting to investigate whether

1¥.B. pp. 117-119.

2This and the following series have been collected together along with the
original Sanskrit verses as an appendix to On the Hindu Quadratue of the
circle. by C.T. Rajagopal and Mukunda Marar.
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the Yenri had any connection with the circle mathematics of
India of the 14th and 15th centuries. Probably because the
series for = were discovered in the remote south-west corner of
India, these are not found in the Arab, Persian or other foreign
works of the medieval period.

7.7. Area of a circle

Once the circumference of a circle was determined, finding the
area was easy. For from very early times it was known that the

. . d . .
area of a circle = circumference . 5 The early Jaina works

like Umasvati’s (c. 150 B.c.) Tattvarthadhigamabhdsya are
familiar with it, though they give no indication as to how the
result was arrived at. Aryabhata’s statement of the result seems
to be meant to give his readers a clue to the method.

FfeoTgETd fasrraTagaRe qaes o
(A. B. Ganitapada)

(Half the circumference multiplied by half the diameter is the
area of a circle.)

The details are given by Nilakantha. A circle can be cut up
into a large number of Sicyakaraksetras (tapering figures) by
means of lines drawn from the centre to the circumference. If

Fig. 5

the number of such sicis is made sufficiently large, the base of
these triangles will be straight lines. When two of these thin
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siicis are combined inverted, a rectangle with one side equal to
the radius and the other side equalto the base of the siicis
results. The whole circle can thus be re-arranged as thin rect-
angles. These thin rectangles attached one to another with the
sides equal to the radius coinciding, will produce a rectangle with
length = half the circumference and breadth = the radius.

diameter

Hence the area of the circle=} circumference. >

The same proof with a slight modification is given by Gane$a
and the Y.B., The siicis are not to be separated out and put
together again. Instead, the circle is cut into two semicircles
first and the same number of radial lines are cut in the twohalves
reaching upto the
circumference. Then
the two pieces are
straightened out and
joined inverted to
yield a rectangle with
length =1 the circum-
ference and breadth
=the radius.

Fig. 6

D. E. Smith and Yoshio Mikami in their History of Japanese
Mathematics say (p. 130) that in the Temgan Shinun of Sato
Moshun published by him in 1698 the same method is used for
finding the area of a circle and the method is distinctively
western. In India the method must have been in use from the
time of Aryabhata I, if not earlier.

7.8. One calculation connected with the area of circles is pecu-
liar to the Jaina texts—the calculation of the area of a valaya-
karaksetra (a figure in the form of a ring), an annulus. The
formula first occurs in the Tiloyappannatti.

gfofeag gEig e grormaton
Afus sedwtal awgwife g
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aftgei zafy a2t gaviw gafe o /g
sfveraaamEr @9 & s ggawan
(IV 2521-2522)

(Subtract twice the breadth of the desired annulus from twice
the outer diameter and multiply the square of the remainder by
the square of half the breadth and by 10. Know the square
root of the product as the accurate area of the desired annulus).
That is, if d is the outer diameter and t the breadth of the ring,
the area

- ,\/ 10 ( 5)(2d—2t)" == 5-2d—20)

For area of annulus=area of outer circle—area of inner circle

(d2—d2f-4dt—4t2)
. 4

it

The same formula is given in the Trilokasara with an insignifi-
cant variation (V. 315)

Area of annulus=—72r-(d,+d2)t, where d, and d; are the outer
and inner diameters and t is the breadth of the annulus.

(area=— (d*—dy?) =%(dl+d,)(d‘-d,):—.--z_ (d;+d,)2t

= 5-(dydy)t.)
Mahavira gives formulae for the area of an out-lying and in-

lying annulus (G.S.S. VIL. 28) as A=(dt) n.t (where d is the
inner or outer diameter and t the width of the annulus). The

1The word vydsa has no fixed meaning in Jaina literature. Here it means
the breadth of the annulus. The Sanskrit rendering of the verses is

fepofrgag=ar: s e |
wrafa@r wadvsfa syrardgar qufaar |
w_ ufaear gwfa: aat qaaF: wafa @ =
TRAAQERE @ o orAalfg erwaq |l
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gross area of a nemi is given as A4y wqe7e ey (The area of a
nemi is half the sum of the bhujas multiplied by the breadth).
(G.S.S. VILT). Though Prof. Rangacharya interprets nemias an
annulus, the word perhaps means rathangasakala” (bit of a wheel
or annulus), which is the definition given to it by Nardyana
Pandita (G.K.Ks, Vya. 14). The exact area of a nemi is given as
“The sum of the back side and the inner side divided by 6 and
multiplied by the breadth and by the root of 10 is the area of

the nemi’ (G.S.S. VII. 30%) i.e. area of nemi:e%a—“—t. 410

where a, and a, are the inner and outer lengths of the nemi. The
only explanation for this formula is that Mahavira considers
the formula given in verse 7, gross because the gross value of =
namely 3 is involved in it. Hence he divides the whole by 3 and
multiplies by 4/10, his exact value of =. Narayana Pandita gives
the expression for the area of an annulus as (dt+4t?)n (G.K.Ks.
Vya. 14). No separate expression is given for the area of a nemi.

Mahavira attempts to give expressions for the circumference
and area of an ellipse also. His classification of regular closed
curves into samavrtta and ayatavrtta (equal and elongated circles)
is perhaps traceable to early Jaina literature. where we come
across samacakravala and visamacakravala. The rules for calcu-
lating the circumference and area of an ellipse are : The adyama
(longer diameter), combined with half the vydsa (shorter diameter)
and doubled gives the circumference. One fourth the shorter dia-
meter multiplied by the circumference gives the area.” (G.S.S.
VII. 21) ie. if a and b are the major and minor axes of the

ellipse, circumference~=2(a-- -2— )

and area—;circumfercnce.g—;.: $b.2(a+ ;):%b(a—]-—; ).

The formulae seem to be the result of an arbitrary extension of
the ones for the circle to the ellipse. The rough value for the
circumference of a circleis 3 d and of the 3 diameters, two are
allotted to the major axis and one to the minor arbitrarily. The
values given as exact for the circumference and area of the

ellipse in VL. 63, viz.o/4a*}6b* and 2 v/4a-4-6bt seem  simi-
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larly to have been obtained by taking w==4/{¢ and distributing
10 between a2 and b2, It seems unlikely that the properties of
an ellipse were really investigated into.

7.9. Mahavira and Narayana Pandita give accurate formulae
for the area of the space enclosed by three or more equal,
mutually touching circles.

If the diameter of the circles
is d, the area enclosed by 4
circles = area of a square
with side equal to the dia-
meter minus the area of one

md?
<

circle! —d? —

Fig 7

In the case of three circles,® the enclosed area -- area of an
equilateral triangle with
side equal to the dia-
mreter minus half the
area of one circle. Here
since the angles of the
three sectors are 60° each,
each of the sectors -=1the
circle. ... 3 sectors to-
gether = 4 the circle.
Hence the rule.

Fig. 8
A general formula for the space enclosed by any number of
equal circles is also attempted.

1G.5.5. VI1 824,
21bid. 84},
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woadT e argfawa frwargrm: |
qFTHHEar v fg faarat sgate: o

(G.S.S. VII. 39)
(One third the square of the semi-perimeter divided by the
number of sides and multiplied by the number of sides dimini-
shed by one gives the area of all regular figures with corners (or
rectilinear sides) and one-fourth of this is the area enclosed bet-
ween the circles.)

That is, if a polygon has n sides each equal to a

(&) . -y

its area=
s2 n-—1 . ..
or 7 - , where s is the semiperimeter.

This is true of triangles, squares and the circle considered as a
polygon with infinite number of sides, but only if the approxi-
mate values are taken. At any rate, the formula is a clever one.

The area enclosed by the circles at the vertices of a regular

polygon
1. s n-1
~4 "3 n
This also works for 3 and 4 circles but not for higher numbers.
Narayana has two similar formulas

g g hgaaefafoga o femomt
(G.K.Ks.Vya. 15)

(The square of a side multiplied by the square of the number of
sides as diminished by the number of sides and divided by 12,
gives the area in an equilateral triangle etc.)

i.e. the area of an equilateral polygon
(n®—n)a?

12 _
This is really old wine in a new bottle.

s2 n—1

For Mahivira’s formula A-= — 3
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(na)® (n—1)

T34 " n
__n*a?(n—1)
T 7 12n
(n2—n)a?
12
For the area enclosed by the circles at the vertices’Narayana has
SragHTETHEA T gar I 1
wra fordg arrcwe AT st fagee o

(G.K.Ks.Vya. 16)
(The square of half the sum of the diametres multiplied by the
number of circles diminished by one and divided by 9 times the
number of circles, is the area enclosed by the circles; Or, it is
the area got with the above rasmi (number of sides) formula
divided by three)

2 —_
i.e. the area enclosed = (rg . n—1 where d is the dia-
2 9n
meter and n the number of circles.
__ d?(n*—n)
o= —133

The two formulae are almost the same. Only, where Mahivira
has } the area of the polygon, Nardyana has ;. The change is
‘not for the better. The result is now strictly correct for no
value of n. For, the formula gives too high a value for 3 and 4
circles and too low a value for numbers above 4.

7.10. The segment and the chord

The expressions for the height, the chord and the diameter of
a segment interms of the others occur in the Tattvarthadhigama-
dhasya and other early Jaina works.
(1) h=} (d—+/d*—c%) where h is the height, d the diameter
and c the length of the chord.
For h == CD = OC—OD (fig. 9)
=0C—+/0A—AD?

_d_ ja=a
-4 -

(2) ¢ = 4/4n(d—h).
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This is obviously obtained by a considération of the similar
triangles ADC’ and CDA, from which

€D _ A
AD ™ CD
h o cf2
or BT d—h
c2
or 4 =hd—h)
or ¢=v/4h (d—h)
3) d:%hi‘_lﬁ
This follows from result (2)

Fig. 9
The arc, the chord and the height of'a segment are sought to
be connected in another sequence of formulae

a=: 4/6h?-FC? (a is the length of the arc.)

romr
h— / -
¢ =/ZTGHE.

These expressions occurring in the Tattvarthadhigamabhdsya
etc. are very old and were known in ancient China. Even the
Upangas, a section of the oldest part of Jaina canonical literature
are likely to have been aware of these or similar formulae. The
Jambidvipaprajfiapti gives the lengths of arcs to small fractions
with the addition twfafewafes’, with something still remaining
(S.11 & 16). Jiva (chord) also is mentioned. These formulae are
probably the result of rough generalisations from the expression
for the semi-circumference in terms of the diameter, the dia-
meter lengths in the expression being arbitrarily distributed
between the height and chord of the semi-circle. For

10 d2
4

semi-perimeter - J
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/6d2 1-4q?
— d
=4/6h% ¢t since h — ~5-andc =d

in a semi-circle. This was perhaps accepted as true for all
segments.

The other expressions are but inversions of this. The Jainas
have many other expressions too for the segment, which seem
to have been similarly derived by arbitrary generalisation.

wc h .
occurs in the

I. The area of a segment =1/10. 5411
Brhatksetrasamasa of Jinabhadragani (529 — 589 C)

2. Length of arc a = / 2{ (d + h)? —~d2}, occurring in
the Tiloyapannatti (IV. 181) is of the same type.?

3. a =J4h(d+ -l;-)

area of segment = } (c+h). h and their derivatives, viz.

a2
d=13(z5—M
h =J dz — _a; _— d (got by solving the

quadratic equation a :J4h d + t12)

The last three occur in the Trilokasdra of Nemicandra (10th

century).
Aryabhata I's statement of the theorem about the chord of a

circle is characteristically compact.

1B.B. Datta — Mathematics of Nemicandra, Jaina Antiquary. Bhaga 2.
kirana 2. pp. 34-38. Also IV. 2374, Tiloyapannatti.

2For, semi-circumference-:Eg =V lO\d

2
.. semi-circumference?
10 a2 9d? d \?
= 42 )-- ST R
2 2( o —d ) 2 ( d+ 3 ) d

2 g(d +h)2— d2§
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qq wedant ndeATwn @ &9 gEn

(A. B. Ganitapada 17)
(In a circle, the product of the arrows is the square of half the
chord of the arcs.)
Brahmagupta gives this and the derived formulas (Br. Sp. Si.
XII, 41 & 42). Neither of these mathematicians deals with the
arc or the segment in the section on Ksetragapita. But in the
Spastadhikara, the arc is calculated from the ardhajya (half-
chord) with the help of the sine-table. Sridhara’s expression for
the area of a segment is

SaTUFTAganTe i quTed Taf: |

favigaras somay FviEe & o (1. S. 47)

(The square of the arrow as multiplied by half the sum of the
chord and the arrow should be multiplied by 10 and divided by
9. The square root of the quotient gives the area of the
segment.)!

i.e. area of segment = J {h—(i;_'_h.)}z . 1%

=l; gh(_‘;ﬂ‘)} (since vio=m)
Mahavira gives the formulae: area of a segment —_—5:4‘—[-‘

(G. S. S. VII 70})
and arc=4/6 h®fc?  (ibid. VIL 73})
As the vydvahdrika values of these (i.e. approximate values use-
ful for everyday calculations) are given

area= (c+h) _2}_1_

_A/5h24c?
are= (G. 5. S. VIL 43)
The only difference between the two sets is that the one is

derived with m=1/10, while the other is with == 3.

1B.B. Datta (Jaina Antiquary, Bhaga 2. Kirana 2 pp. 34-38) says thatV. 47
of the Tridatika embodies the formula, area of segment== ,}(c+h) h.
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Aryabhata Il reproduces the ancient formula for the arc
(1/6h*4c?) and the formulae for the height and chord derived
from it. His formula for the approximate area of a segment is
SAATAFARASA AT €L EqmanA AT, |
T qq ¥« Hawd HTHP wqq ¢

(Ma. Si. X1V. 89)

(The product of half the sum of the chord and the arrow and
the arrow multiplied by itself is combined with one-ninth of
itself. The square root of the resulting quantity is the approxi-
mate area of the segment)

i.e. area of segment -;A/gh (th)} + 1 h (c-fz—h)

\ol

o

If, instead, svanavamabhiga is taken as : g (c+h)§ the

h
expression reduces toJ IOZ- h(e+ )§
= h (c+h)
3 T2
This is Sridhara’s formula.

Sripati omits the expression for the area of the segment. But
the whole series for the height, chord and diameter, each in
terms of the others, and for the arc, chord and height, each in
terms of the rest is given.

Bhaskara II's commentator Siiryadasa (early 16th century)
derives the familiar formulae for the chord, height and diameter
in a new way.

1gudhakara Dvivedi accepts the reading manﬁmmmﬁm\ and the read-
ing accepted here is given in a footnote. With Dvivedi’s reading the formula
contained in the verse will be area of segment - - :3: C SC—ZD which gives a
value grossly in excess of the actual area of a scgment. Afso when giving
the exact area (i.e. with ™— 272 y the formula used by Aryabhata is
T opo(erh)
3 ki

area
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Let AB be any chord and EF an
Ny . equal chord vertically opposite to it
(i.e. parallel to it). Join EB and BF.
Let DH be the diameter bisecting
ABat Cand E F at G. )
DH—-CG DH--BF

Th =
en CD 5 5
[ . e e
b f DH - 4/ BE:*-—EF?
\_ . >
Fig. 10 3 d_\/azi-,lz
I

Bhaskara discards the old crude methods of finding the chord
in terms of the arc and vice versa and gives much better approxi-
mations, though he recognises these too are approximations

only. .

st samgn @
qrEa: qfefrasagdaan :
AT @ 3 wSeEge —
sTaEd gawATafag saFr @ i
(Lil. 210)

(The circumference diminished and multiplied by the arc shall
be called the first (prathama). One quarter of the circumference
multiplied by 5is to be diminished by the prathama. The
prathama multiplied by 4 and the diameter should be divided
by the above difference. The quotient will be the chord.)

That is, if c is the chord of the arc a, and if d and C are the
diameter and circumference of the circle whose part the arc is
~ 4d (C—a)a
~ 5C2/4—(C—a)a
This is, as already pointed out in Ch. I, a modification of
r. 6 (180—8)
40500 —0(180—6))

puting sines directly from the ar.., and it gives very close
approximations.

c

Bhiaskara I's formula r. sin 8= for com-
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The converse is
sgTaTfewmTagantfasar fawar
straiferge fora: afcdeg a7
Feaxfrar afcfaam agamar
Y o2 gframr afy 6 & (Lil. 212)

(The square of the circumference multiplied by 5 and one-fourth
of the chord is divided by the chord combined with 4 times the
diameter. When the square root of one fourth the square of the
circumference diminished by the above quotient is subtracted
from the semicircumference, we get the arc.)

With the same symbolism as before this means
cC | T3¢
27N 4 AcF4dy
Bhaskara’s rule for the chord from the arc is reproduced by
Narayana with a change in form!

(]
‘§C2+ (52:—_—a)2 i" 4

As the editor of the Ganitakaumudi shows, this, when simplified,
reduces to Bhaskara’s expression.

a =

The most significant achievements in épproximating to the
value of the arc in terms of the chord belong to the Aryabhata
school. The simplest of these expressions for the arc is to be
credited to Nilakantha Somayajin. -

AT RYEITiATEaiEaT 98 o g |

(A. B. Ganitapada, p. 63)
(The square root of the sum of one and one-third the square of
the arrow and the square of the (sine) chord is the arc nearly)

ie.a - TFPRF S
Here the arc is calculated in terms of its sine chord (s) and its
versed sine chord which is the same as the height of twice the
arc.2 Let h be this height and ¢, ¢y, ¢4......... the whole chords
of arc AB and of the arcs got by successively halving it. Leth,,

1G.K. Ks. Vya., 69.
?A.B. Gapitapada, p. 101ff.
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hy, hyooo be the heights of these arcs. In the figure, AB is the
arc requred to be found and arc ACis double arc AB. If
through B the diameter BOK is drawn, it will bisect the chord
AC at right angles at D. Then AD is the given sine-chord
(ardhajya) of the arc AB

A\

K:
Fig. 11

and c,?-= AB*-=AD?{BD?®
= s2 —l—l‘)2
If E, the middle point of arc AB, is joined to O, the centre
of the circle, cutting chord A B at F,

¢t~ A E2=AF*}EF?

=y
Similarly ¢ =34 hy?
by

c.2 ,&12_+h2
() 3
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+ 42 + +h8
S+ et + he
4"~1T 4"_2 4""3 . . n—1

If n is sufficiently large the arc will be very small and the
chord can be equated to the arc, when we can write

Cpd=

foit I

an* = 4;~1 + 4n st 4n-s+ c o b
Proceeding inversely the square of twice this arc

. c,?

ie. a = 4;_2 } 4"_, + 4,‘- 3 + . .44 ht,

c,2 h? | hg?
azn-g = 4'1.3 % 4,,1_‘ 71 4"3_5 + - . +4’ h’n—x
2

agt ;4_531—+ h2+4dhd+. . . .4do2 b,
a2 =c¢?4-4h2+42h?+. . . . 44%1h8,

= s+ 4h? 4+ 4h2 4. . . 44 1h3,

AB? c? - .

Now BD=h = BK = d (from the similar triangles

BAD and BAK)
2
EF—h, = iﬁ’i—

L‘\P’—-i—EF?
"—__d—*
o , b
4d d

-1 (neglecting higher powers of h, etc.)

i

Similary, hy =



182 Geometry in Ancient and Medieval India

h
h3 '_—"——4—3-
Therefore h2, h,2, h,2...... ... will be a geometrical

. P | .
progression with T¢ 28 common ratio.

Hence h* -4 h? - 42h2 4 ...... s

h? h2 h?
=Rttt
1 1
=B (4t )t e e
t 3 4.,
= b ( = ) =ht.lg— ke
a2 = st hr(l +3})

Nilakantha notes that thisis only an approximation, since
in the calculation of hy, h, etc. their powers are neglected. But
since the neglected powers are divided by the diameter also,
these will be negligibly small for small arcs, and Nilakantha
recommends the use of the formula for small arcs only.
Again he insists that all this is implied in Aryabhata’s siitra
T WIHAT AESAT : § A G

7.1Y. Madhava s discovery in the 14th century of Gregory's series

As for the circumference in terms of the diameter, this
school has to its credit an expression for the arc in the
form of an infinite series in powers of the sine-chord and
cosine-chord, which is capable of being wielded to yield any de-
sired degree of closeness. The series is embodied in the following
verses quoted in the Kriyakramakari and assigned to Madhava!
(14th century).

Tt Flear Sqn & |

VAN AOF FeAT FAfeaw T LA

sawTfesR ISy far FAafag: |

RGeS AT |

WA SFIEIFAT AT g

AHAREAIE Fr1afig ST 1) K.K. 692-693
(The product of the given sine-chord and the radius, divided by
the cosine chord, is the flrst result. Then a series of results

1Als50 quoted in the Y.B. (p. 113) and assigned to +the Tantrasarmgraha,
which, it is to be remembered, takes much from Madhava.
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are to be obtained from this first result and the succeeding ones
by making the square of the sine-chord the multiplier and the
square of the cosine-chord the divisor. When these are divided
in order bythe odd numbers 1, 3, etc,, the sum of the terms
in the even places is to subtracted from the sum of the terms
in the odd places to get the arc. The smaller of the sine and
cosine-chords is to be used for this calculation.)
That is if s and ¢ are the sine and cosine chords.
ST ST s? sT st sT s8

the ar¢ == ——v  ——— 1 — b = e

c 3¢ ¢ 5¢ ct 7c¢ cs +
i.e arc——sr ] s r-L-lJ st r ! s’ r+
e ¢ 3 ¢ 5 [ 7 ¢

. s . . . .
Since -E-n:tangent of the same arc, this equality, in a circle of

unit radius reduces to arc — t-é»' 13 -;‘ - ,l’ t? 4

where t = tan 8. And this is the series rediscovered in Europe
by James Gregory in 1671,
The . method and principle of derivation are the same as those
for finding the circumference in terms of the radius.
In the course of deriving the series for =, it was shown that
circumference R3 RS R7
—g = R — R -+ SR IR NN
Here instead of evaluating 4 the circumference, we have to
evaluate the arc whose sine-chord is s.
Let AB be the half-chord

X G _ = §in the circle with cen-
A /y B tre O inscribed in a square
of side=2r. As for finding
3 the circumference, joio
O B and produce it to cut
the side of the square in C.
Then the number of terms in
the infinite series summed
up,will be the number of unit
divisions in XC. Hence the
expression for the arcis arc

Xcs  XCs

X~ =XC —-—3—r‘2—'+3;-‘-———

Fig. 12.
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Now from the similar triangles XOC and AOB

XC_OX_ o _AB.OX_ s.r
AB OA T0A T o

Hence, substituting in the series,

arc - S:0_ (scﬁ._r)a it (S_C-_*‘)“ e

_s.r s.r s2  s.r st
c T To e T e

By taking chords of known arcs (as for example the chord of
112 circumference (30°) = rj ) we can get other series for =
from this. Itis obvious that arcs above § the circumference
cannot be evaluated by this method.

7.12. The Sine and Cosine series

The sine and cosine series well-known in the Aryabhata
School'and derived in the Yukti Bhasa, are two more of the
achievements of the great Madhava.! For the sine series the
Tantrasamgraha has

(quoted in Y.B. p. 190)?

(One should multiply the arc and the resulting products by the
square of the arc, and these should be divided in order by the
squares of the even numbers combined with their roots, and
multiplied by the square of the radius. The arc and these pro-
ducts should bz placed one beneath the other in order and the

lverses embodying the two series have not yet been discovered to occur
as quotations from Madhava. But the tables of sines and versed sines
calculated with their help are attributed to him. Hence the series also must
have been discovered by him.

2The verses for the sine and cosine series are not found in the Tantra-
samgraha published from Trivandrum. But the Desamangalam manuscript
with a Malayalam commentary contains them (pp. 58-59). The series
occur in the Karanapaddhati too (V1 12, 13).
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lower ones should be subtracted from the upper ones for getting
the sine-chord.)

The various terms are, if a is the arc, and r the radius,

a.a2 as
@+ T T3

a’ . a? as
3@ T 75

as ., a? a’?
/5616  /7.r10

ad aé a’?

Hence sine-chord == A= o3 + AR AR + ..

The series for the versed sine is made similarly
frger smaadfor &9 aoq weThT
& Ferspagrnt feasaramigd: wnq o
frry saTaRadT fesdara frvemary
FET ARG AT ARG T

(One should multiply one and the resultant products by the
square of the arc and divide in order by the squares of the even
numbers diminished by their roof;, and multiplied by the
square of the radius. But let the first be divided by the radius
multiplied by two only. These terms should be placed one
beneath the other in order and the lower ones should be sub-

tracted in order from the one above them in order to get the
arrow.... )

i.e. the versed sine or the sara of the sine chord, as the Indians
put it

a? at ) as
T2y 2.2 T 2.12.18.30
a? a4 at

=721 740 T 6.
The derivation of these series making use of the samkalita of
the parts of a whole or integration employed in getting the
series for w, is based on still subtler analysis and proceeds stage
by stage. The first step is to find expressions for the change in
the sine-chord (bhujajyd) and the cosine-chord (kotijyd) produced
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by a small difference in the arc, thatis to differentiate the sine
and the cosine.

Let P P, represent a small increase in
the arc PX. Draw the bhujajya and
kotijya (P,Q, and P,R,) at P, and also
those at the middle point of the
. A small arc (P,Q, and P,R,). Then, if
the point of intersection of P,Q, and
PR is S, triangles P,SP and OQ,P,
are similar —

0 S X
Fig. 13
. BS 0Q,
" BP "OP,
or P,S - 0Q, . PP

OP,

- P,Q, . P,P
and PS - - —————~OP0

But if the arc PP, is very small, the sine-chord and cosine-
chord at P, may be taken to be equal to those at P and the arc
PP, to coincide with the chord P P,.

.. P, S (sine difference or bhujakhanda)

_the cosine chord at P . the increase in the arc
radius

r cosa.da

i.e. in modern notation, d (r sin a) .

rsina.da

Similarly the kotikhanda d (r. cos a) -

This theorem is stated and proved both in the Yukti-bhasa
(pp. 165& 173) and in Nilakantha's Aryabhatiya-bhasya (Ganita-
pdada pp. 48-50) as an elaboration of one of Madhava’s rules.
The result was known to Bhaskara I also.

By applying the principle of proportionality once more, the
khandantaras or the second differences of the sine and
cosine chords, can be calculated. For the difference between
any two bhujakhandas, i.e. the second sine difference
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- 2nd kotijya . qr-fi — st kotijya vd—;

- d_r? .kotikhanda

- 42 iy f’—f‘)

.. - (d a)?
== bhujajya . (r2)
. (d a)2
= r.sina.
r2
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This result also occurs both in the Arvabhatiya-bhasya

(pp. 51-53) and in the Yuktibhasa (p. 173).

The above result is used in the Yuktibhdsa to find an expres-
sion for the difference between any arc and its sine chord. Let
the arc be marked off in the first quadrant and divided into n
equal parts (A\a). Let s;, S5, Sy....... be the sine chords at these

points and As,, AS,......the sine differences at these points.

Then clearly DS, =8,
AS;— NSy =5, . (drza)ﬂ
or /A S = A% — 5. (drf)2
s~ . (dr:\)2
Similarly As, _ASQ:sg(drea)z-,:sl——sl . (dr——z—i—)—z

(d a)? (d a)?
TS

A"Su 151" 1 l'2 2 T

..S,, the sum of all these sine differences --

n.s, —'g(n—-l)sl-Hn— Dyt t2 Sy sn-1§

(d a)*
r?

(d a)?

ré

If nis suﬂicientiy large, the first chord will nearly coincide with

the arc. Hence n.s,=the whole arc.
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.. The whole arc —s, i.e. the difference between the arc and the
1-2

sine. chord = §(n—1) s+ =2t 1 o

This is also equal to the samkalita of the second sine differences,
Now the height ((fara) of the given arc = the sum of the cosine

differences = s, ._d—r—a—{—s, . g—ri—t— ......

These unknown sine-chords are again assumed to be equal to
the arcs themselves and d a to be equal to one unit.

Then the height of the arc = !r_ (142434 ... ... + a)
1 &
T Tr T2

The sine differences A s,, AS,...., and hence(As;— Asn’y). . ..
can be expressed in terms of the corresponding arcs.

For As=cy . %? where 3 is the cosine chord at the middle
point of the first arc bit,)

= d—? (r——hi y (h 3 stands for the height of the half-arc)

Similarly As,:—.clt-q—?f =(r -hxg ) (-j—:‘

d d
As,.:c,._* ) %_ (r——hn-i ) —?—

d .
co ASy— ASp== -;E (r———h% — T + h,,“% )
Since dais very small h% can be deemed to be equal to
h°=0, and hn_i = hn

d
Asl—As,,=——l_El . h,
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_da a
Tr " 2r
a? .
=75 if da==1 unit
. a—1)2
Similarly As;— ASw; = ( X
(a—2)°

As$;—ASu—p = 2

The sum of all these = the samkalita of the second sine
differences

a? (a—1)2
e tae T

L1 2 a2

T2t 3 rn/3
But the samkalita of the 2nd sine differences has already been
shown to be equal to the difference between the arc and its sine-

chord.

. . _ a? (a—1)2
..Arc—sine chord= T T

Here, since, inthe derivation of the expression for the height of
the arc, the sine chords have been equated to the arcs to which
they are not really equal, this same difference between the arc
and its sine-chord has to be applied as correction to the arcs
appearing in the expression, i.e. in

1
T {a—}—(a—l) +(@a—=2) 4 ... ... }
When the correction is applied this becomes

! 2’ @a—1»

= %_- {a +@=1) + ... i— —lr—{(l_:,‘a.ar2 + (/i;.l£:+"' §
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Hence the correction for the height

1 a? (a_]).} .

r) 3.2 T T3 T
- al b
T 3 T 47 /4

When this corrected value is used in the expression for the arc-
sine difference, it expands to

I §a2 | (a—iy by _af -
T §2r+ Zr T } r{l’“- At ETrat %
a? ab
2123 405

a? as .
/3.1 . /S
Thus, these two corrections can be applied ad infinitum to the
interdependent expressions for the arc-sine difference and the
height. Hence flnally the jya or sine-chord

a3 as M aT
/3 T 5 T8, 4,7+‘”
And the cosine-chord = r - the height of the arc

= a-

a? a4 a$
B + ..... 5 .
r. /2 8. ’4 . /6

Putting a == r § and remembering that the sine and cosine
chords are r sin § and r, cos # . we get the series

. 6 6 6 .

Snb =8 oyt Ty
6: . 6 6%,

Cos =1 -- _/_i-i_ 7-3"—7-6+ ......

Series for trigonometrical functions were known in Europe by
the 17th century, whereas in India they were known in the 14th
century.

7.12: The common chord and its height in intersecting circles

Problems connected with intersecting circles were important
for the calculation of eclipses and hence they find a place in
most Indian mathematical and astronomical works. Aryabhata’s
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rule for calculating the heights of the arcs enclosing the
common portion of the circles is
Y § g6 TTAH WA AT |
TR TEITARRY TR 1)

(A. B. Ganitapdda, 18)
(The two diameters diminished by the grasa (the largest breadth
of the common portion) and multiplied by the grdsa should be
divided by the sum of the diameters less the grdsa. These will be
the height of the arcs of the circles in the common portion, each
of the other.)

Fig. 14

The circles with centres O, and O, interesect at E and F. The
line joining their centres cut the circumferences at A, B, and
C, D. Then C B is the grasa. If EF, the common chord, cuts
the line of centres in G, GB and GC are the arrows and the
rule tells us how to calculate these. If d; and d, are the dia-
meters and h, and h, the heights of the arcs

{dy-—(hy+hy)} (hy+-hy)

d,-4-dy,—2 (h;+hy)
tdy=-(hy +-hy)} (hy-1-hy)
“d,Fd, 2 (hy1hy)
This is derived by Nilakantha using Aryabhata’s expression for
the chord of a scgment in terms of the diameter and height
Here since E F is a chord common to the two circles

h,

and h,
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E F2
.} = hl (dl—hl)=h2 (d2~h2).
hl___ dz‘—hz
Hence h &;___h-l
d;—h,—h,
d,—h,—h,
- h1+hz; d2+d1‘2 (h2+h1)
ha dl“(h1+hz)
b, _ dd=(bthp) (hthy)
d;+d,—2 (byth,)

) The same formula is given by Brahmagupta, Mahavira,
Sripati and Narayana.

7.13. Inscribed polygons

Mabhavira has an interesting rule for finding the side of any
regular polygon inscribable in a circle of given diameter.

AT IO €T G |
BT AT T OA WA SAEY TIAEEAT |y
(G.S.S. VII. 221})

(The given diameter of the circle should be divided by the
circum-diameter of any polygon of the given type. The sides of the
polygon multiplied by this ratio will be the sides of the required
polygon (i.e. the similar polygon inscribable in the given circle.)
The method can be used to inscribe rational polygons in a given
circle, provided the method for forming a rational polygon of
the given type is known. Thus from the formula for the cons-
truction of rational triangles and cyclic quadrilaterals, similar
rational figures can be inscribed in the given circle.!

Mahavira calculates the diagonals and altitudes of a regular
hexagon, but gives a wrong formula for its area (VII. 86}).

Bhaskara gives the sides of regular polygons of sides 3, 4, 5,
6, 7, 8, 9, inscribed in a circle of diameter 120000. We do not

4Dr. Datta (On Mahavira’s solution of Rational Triangles and Quadrilaterals
Bull. Cal. Math. Soc. XX pp. 291-92) points out that the problem of inscrib-
ing rational polygons in a given circle was attempted by Euler (c. 1781) and
H. Schubert (1905).
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know what his method for getting these was. Gane$a divides
the circumference into as many equal parts and finds the chord
corresponding to one division using the sine table. But the
results do not tally exactly with Bhaskara’s results. Alterna-
tively he calculates the sides of the triangle, the square, the
hexagon and the octagon geometrically.
Narayana’s method is the first one
sarafcfacfrmarmyg aqaar Cmafma: ofefa:
& 99 AT e AT o

(G. K. Ks. Vya. 72)
(The arc is to be obtained from the circumference divided by
the number of sides. The chord of this arc will be the side of
the (inscribed) regular triangle and other polygons. Or let the
circumference be equal to the number of sides. Then the arc is
one unit. Its chord is the measure of the side of the regular
triangle and other figures.)

In the latter method the actual sides are to be obtained by
multiplying the chords by the ratio of the diameter of the given
circle to the diameter of the circle used for the construction.

An interesting calculation that Mahavira does, is finding the
number of small cylinders in a cylindrical container, when the
diameter of the small cylinders and their number in the outer-
most layer are known. The problem is connected with the arrange-
ment of arrows in a quiver and the solution is : “The number
of arrows, forming the circumferential layer, combined with 3,
squared and again combined with 3 is to be divided by 12. The
quotient will be the number of arrows in the quiver” (G. S. S.
VI 288) i.e., if nis the number in the outermost layer, the
(n+3)24-3.

12

The formula is based on the knowledge that only six equal
circles can be drawn around a circle of equal radius touching it
and each other, which, in its turn, is based on the fact that the
lines joining the centres of 3 equal circles touching one another
is an equilateral triangle.l Then the number of circles in the
succeeding layers will be 2x 6, 36 etc.

total number N=

1The rationale is given by Prof. Rangacharya.
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Fig. 15
.. The number of circles in p layers (along with the central
circle =1464+2.6+4 ... .. XPp.6=14+6 (14+2+ .. ..-+p)

=:l+-6—B(—12)j;1—).—_1+3 p (p+1). If the pth layer contains
3 3n2 3n
n circles, p::—g—, so, N= l—|——6E ( ~n6——|—-l) = l+§—6-+ <

124-n24-6n _ (n-+3)*43
= 12 =712




Cuapter VIII
VOLUMES AND SURFACES OF SOLIDS

8.1. The Sulbasiitras do not speak of volumes directly. But they
must have been familiar with the concept, since they used to
fix the height as well as the number of layers and total number
of bricks in the fire altars of regular geometrical shape. They
might also have realised that the volumes of regular solids with
opposite faces parallel is the product of the area of the base and
the height.

8.2. We bave indisputable evidence of their knowledge that a
parallelopiped is cut into two prisms of equal volume by the
plane passing through the parallel diagonals of one pair of
opposite faces. Baudhdyana enjoins that the Smasanaciti fireplace
should have for base an isosceles trapezium and that its top
surface should slope from one edge (eastern) to the other
(western) so that its eastern height is up to the neck and the
western height is up to the navel.? And yet the volume of the
fire-place is to be the same as that of the usual fireplace. The
method adopted to achieve this is:2 The usual vertical height of
the fire altar is increased by one-fifth of itself. Then this whole
height is divided into 3 parts. The fire altar is built up in the
usual way and the top one third is then sliced diagonally by a
plane passing through the top eastern edge and reaching up to
the bottom western edge of the one third part. Then since the

third part is —g- . %i.e.—zs—- of the whole fireplace, what remains

after slicing is—2§ . —65-—}- -12- . %———_- 1 and the added one-fifth

is removed.? The resulting volume will be exactly equal to that

1B.Sr. xvii. 30 quoted by Dr. Datta on p. 1020f his Science of the Sulba.
2B.S1. TI1. 266-269.
3, Dr. Datta says (Science of the Sulba p. 103) that this construction is

based on the approximate formula for the frustum of a pyramid namely,
Ve a+a’) (b+b"

3 5 h. But this seems far-fetched. The solids produced
by the slicing are prisms or wedges and the whole block also can hardly be
called the frustum of a pyramid.
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of the usual fire-altar aa fam famw: (The division of it (the third
part) is exact).

It is hard to decide how old the Jaina formulae for volumes
are. The Prajiidpanopanga, (c. 92 B.c.), the Bhagavatisiitra and
some karapa gathas which speak of arranging atoms or shots in
the shapes of various plane and solid geometrical figures might
have been familiar with the computation of the volumes of such
figures. Virasena’s Dhavald (9th century) and the Tiloyapannatti
{c. 8th century), which probably are representatives of a much
more ancient tradition, are quite familiar with these formulae.
Virasena quotes an old karanagatha for the volume of a trape-
zoidal solid.

ARTAAATH-HG TEAE 0 0 7 AT )
qurrfog sforesy Sargusfsg @« 1

(Satkhandagama, part 1V. p. 20)
(Half the sum of the face and the base multiplied by the height
and by the depth is to be known asthe volume of a figure
resembling a rattan seat.)! The first part of the rule gives the
area of a trapezium and that multiplied by the thickness is the
volume of a solid whose section is a trapezium.
face--base

2

Other Jaina works repeat this formula. The Tiloyapannatti has
formulas for computing the volumes of other regular solids also.
1. The volume of the column of air underneath the earth,
which is rectangular in section, is given as the product of the
length, breadth and thickness (T.P. p. 46)

i.e. Volume of a trapezoidal solid = .height. depth.

1 AEAEAANTE SR T IGT )

gaafd s darafeay & 0
A separate expression for a figure resembling a mrdanga (i.e. two trapezoidal
solids joined at their Jargest face) is given just after this.

q& AR i W g fgRgRE e foree

weprford srfirsY s |
which when literally translated reads <“The base multiplied by the middle,
combined with the face, halved and multiplied by the square of the height
should be known as the volume in a figure resembling a mydariga and does
not seem to give any sensible meaning, Maybe the garhd requires emenda -
tion.
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2. The volume of a cylinder=area of section. height. Though

no special rule is given for this calculation, the knowledge is

implied in the calculation of the volumes of the imaginary

palyas! (pits) employed by the Jainas to measure very long

periods of time.

3. The volume? of a prism with right triangular section=
product of perpendicular sides

2

X height

8.3. The Pyramid

Aryabhata I seems to give formulae for the volumes of the
tetrahedron (a pyramid on a triangular base with all the edges
equal) and a sphere, and curiously enough both are wrong.
What is more remarkable is that a keen-witted astronomer-
mathematician like Nilakantha, grown old in the traditions of
a school which had discovered the fine tool of differentiation
and integration and actually used it to find the volume and
surface area of a sphere, should accept these results without a
demur and even try to justify them. The one for the tetrahedron
is linked with Aryabhata’s controversial formula for the area of
a triangle.

o e FAgEmIRYEe: |
snfyeraedantd @ W wefaffiu
(A.B. Ganitapada 6)

(The area of a triangle is half the product of the altitude and
the base. The product of that and the perpendicular height
when halved gives the volume of the 6-edged solid.)
Thus translated, the verse gives a wrong formula for the volume
of a pyramid.
area of base x height

2

Nilakaptha takes sadasri to mean a pyramid whose faces are
equal equilateral triangles. He has also a long note on how to
find the length of the~irddhvabhuja (the perpendicular height),

V =

irT.P. 1. 118.
2T P. 1. 181. The interpretation 1 give to this verse is different from the
one given to it by the editor of the T.P.
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for which first the circum-centre-cum-ortho-centre of the face
and its altitude have to be found. Then, since the line joining
the circumcentre to the middle point of the side of the base is }

the altitude, and since the altitude is /\/ Z%ai (where a is the

the ardiivabhuja=— '/\/ —a?— ( A/ = a2
WL
A/ Vi —A/ 5

+. The volume of the tetrahedron

\/3a \/2a
2 2 V3

2
_+2a
8

edge).

The correct value will be \/122 al

Nilakantha here anticipates a question why the 9-edged prism
was not dealt with by Aryabhata before the six-edged tetra-
hedron and answers it by saying

FAEEA T 1  AAAAERATETTEd 3 S s e
agfeefmrda  sawd anfeds amafagy 1 aeagEAYeTaEat QT AR
wASIEAT gAY | FEAEAEE TR a9 4fg: T4 T
sengRTTITEny wafred vess anfy wugeRafa a0

(Because it is implied in the formula for a cube. From this for-
mula, it is clear that the volume of an equilateral prism or of a
long prism is obtained by multiplying the area of the triangle
connected with it by its height. Hence arddhvabhujatatsamvarga
is the volume of a nine-edged solid (prism). This is indicated by
this same siitra. By the utterance of the word arddhvabhujatatsam-
varga the intellect will move towards that first. Since its half is
removed, the remaining 6-edged solid also is equal to half of it.
This is the idea). And this from a teacher with a fine critical
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imagination, always prepared to give practical demonstrations
with solid figures to support his explanations.

As many have already remarked this mistaken formula for
the volume of a pyramid is incompatible with Aryabhata’s
knowledge of the correct formula for the number of shots
in a triangular pile (Ganita-pada 21). Kurt Elfering in
his article <‘Uber den Flechen - BZW - Rauminalt von
Dreieck und Pyramide Sowie Kreis und Kugel bei Arya-
bhata I, published in the Rechenpfennige (pp 57-68) pre-
sented to Kurt Vogel on his 80th Birthday in 1968, re-inter-
prets this verse so as to save Aryabhata from the charge of
giving a wrong formula. According to this interpretation the
verse should be translated as ‘The area of the triangle forming
the body or surface (of the pyramid) is half the product of the
altitude - bisector and the base, and the solid equal in volume
to half the product of that and the height is equivalent to 6
pyramids.’

The pyramid according to Elfering is made by dividing an
equilateral triangle into 4 equaf equilateral triangles and folding
up the peripheral 3 triangles over the central one so that the
total surface area of the pyramid = the area of the original
triangle. 6 such pyramids together will have volume equal to
4 the product of the area of the original triangle and the height
of the pyramid.

For the base area of such a pyramid

_ area of original triangle
4
and the volume of 6 such pyramids = 6 x 4 area x ht

.. . ht
— 6 x %area of ongmil triangle x
area of original triangle x ht
2

The interpretation is clever, though it is surprising that it was
unknown to the able mathematicians of the Aryabhata school.
That Brahmagupta, Aryabhata’s critic, does not attack this
verse and the verse supposedly embodying a wrong formula
for the volume of a sphere lends some plausibility to the inter-
pretation.
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Barely a century later Brahmagupta knows the correct formula
for the volume of a pyramid.
dawe ag v anEawe ga fafe: g=ar
GG AT UF IgaTfa qHTT: ()

(Br. Sp. Si. XII. 44)

(The volume of a pit of uniform depth is the area (of section)
multiplied by the depth. This divided by 3 is the volume of a
siici, a figure tapering to a point. . . . - )
The first part gives the formula for the volume of any (here
regular only is meant) solid of uniform height. The second part
gives the volume when the solid tapers uniformly to a point
i. e., that of a pyramid or cone.

The volume ofapyramid-fvomme of a prism on the same base

3
The method of derivation is not indicated.

The third part is elliptical and defies interpretation.
Prthiidakasvamin equates mukhatalatulyabhujaikyam to the pro-
ducts of the unequal breadths of the parallel strips of uniform
depth into which he recommends a pit of non-uniform depth to be
divided, and their depth. These products when divided by the
sum of the widths of the strips and added together is the
samarajju, the average depth. The interpretation gives us a cor-
rect method for finding the volume of a pit of non-uniform
depth and hence with Prthiidaka we may say
gararot v €59 ardl A 96T qaTS
(This is the meaning of the words of the siitra, since it agrees
with the result.)

Mahavira’s rule for calculating the volume of a pit of non-
uniform depth is equally confused.
qaaagfaEany aEeTw | aw

(G. S. S. VIIL 4)

(The sum of the (various) top dimensions with the (correspond-
ing) bottom dimensions are halved. These are again added and
divided by the number (of these halved quantities). This is the
process of arriving at the average equivalent value. )

But the later writers make the method clear enough — that is,
to take the average measurement.
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8.4. Frustum of a pyramid

The formula for the volume of a frustum occurs for the first
time in
qeaagfage ford daa,9 saragrfes afoeas |
qaaw-Tidard e g afoqwlay
Maaforariaaier sqagris wafafa: awy |
et swaAgTHA qferw wafh o gEE 0

(Br. Sp. Si. X1145, 46)
(The product of half the sums of the sides in the face and the
base multiplied by the depth is the vyavaharika (business
measure) volume. Half the sum of the areas of the face and
base multiplied by the depth is the autra! volume. The diffe-
rence got by subtracting the vyavahdrika volume from the
autra volume should be divided by three and the quotient
should be added to the vyavahdrika volume. This will give the
exact volume.)

The two rough values of the volume got by multiplying by
the depth (1) the area of section got from the average lengths of
the sides and (2) the average of the areas at the face and the
base, are termed the vyavahdra volume and autra volume. If
these are V, and Vo,

Va—V,
—
Now V, (in a pyramidal frustum)

the exact volume = V, -

\2
== a_1_—_|72_a_> x h (where a and a’ are the sides of the

a*}a'®

base and the face and h is the height) and V, = 5

V:V0+X"—;—Y—”

e

h §a2+a’2+2aa’ 2a2+2a’2—a2—a’2-—2aa’}

12

1The purpose of introducing this autra volume seems to be mere ease of
expression, The exact meaning of the word autra is still unknown.
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3a%4-3a’*--6aa’}-a?4-a’?—2aa’

== h 2

o= g*(az-{—a'2+aa’)

And this is the correct formula for the volume of a frustum.

About Brahmagupta’s formula for the volume of a pryamidal
frustum J. L. Coolidge says “How did Brahmagupta ever reach
the correct formula in this way . . . he may have heard the result
somewhere. We have seen that it was known to the Egyptians.
We shall presently see that the Chinese knew it also. He sets
about justifying a traditional formula. The practical content is
a prism standing on the mid-section. This is his first guess. A
second guess would be a prism standing on the average of the
two bases. These two give different values. Let us modify the
first by adding to it a multiple of the difference between the two.
He takes one third as a coeffecient perhaps because he thereby
reaches the traditional result.” Let us hope Brahmagupta
had a better basis.

The method can be used for finding the volume of any regular
frustum. The formuia is repeated by Mahavira.?

Sridhara gives an expression for the volume of the frus um of
a cone.

V- TT; . h {d,2+d,2+(d,+d,)?} where h is the height and
d, and d; are the diameters of the base and the top. The conical
frustum he has in view is a well.

TN S : UE U |
Furl agfafaufa-vead wed FI0

(T. S. 38)
(The square root of ten times the square of the sum of the
squares of the diameter at the top, the diameter at the bottom
and the sum of these diameters, when multiplied by the depth
and divided by 24 gives the volume of a (circular) well.)

14 History of Geometrical Methods p. 16.
2But Mahavira uses the word aundra instead of autra. The etymology of
neither is clear
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. h
ie. V= o7 4/10 {dPFdH(d,Fdy))

= T%;{(dlz‘*‘dzz'*“(%‘f‘dz)z }’ since = ='\/_F)
This is, of course, based on the formula
md? hy
43 )
4 and a derivation similar to the derivation

for the volume of a cone <Vol. =

of the volume of a pyramid frustum is
possible. The correct formula for the

2
f, volume of a cone (n d h) is used in Sri-

4.3
dhara’s expression for the volume of a heap

with circular base?! calculated with = - = 3.

Fig. 1

8.5. Virasena's method of infinite division for finding the volume
of a cone-frustum

Virasena (c. 710-790 A.D.)? details a method for finding the
volume of the frustum of a cone in his Dhavald.® If a and b are
the diameters at the base and the top and h the height of the
frustum, a cylindrical core of diameter
- b can be removed from the centre of
the frustum. If the remaining sheath
is slit open vertically, we get a
wedge-shaped solid whose top edge
is =. b in length and whose base is a
trapezium with parallel sides equal to

a—b
> -
Of its other two faces one is vertical

Fig. 2 and the other inclined.

w.aand = . b and height =

1T.5. 61.

2%aina Sources of the History of Ancient India by J.P. Jain. p. 189.

3Satkhanddgama with the Dhavald of Virasena. Ed. by Hiralal Jain. Jaina
Sahitya Uddharaka Fund. Vol. IV. pp. 12-18.
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A small wedge on a rectangular base of sides = b and %—;;E can

then be removed from the centre of this wedge.
The volume of this wedge = mean sectional area x height
= length x mean thickness x height

2—b+
BC (o]
=ﬁb.—-—2~—2-—%.
:nb.a—:-—b.h

Two wedges on a triangular base are now left behind. To calcu-
late their volumes, two planes, one vertical and the other hori-
zontal are drawn passing through the middle point of the
hypotenuse edge, which divide the section of the wedge as shown
in the figure. Then the central part will be the frustum of a

wedge with thickness at base = aT—b

’

w (a—b)

2.2
If the two wedges so formed are
placed one upon another with the
thin top of one lying on the thick
base of the other, we get a

height = 711 and length of base =

rectangular parallelopiped of sides
D oand © @—b) .nd  thickness
2 4
a—b
2
Fig. 3
— —b h
Hence its volume = — (a4 b . 3——2— —
_m(a—b)2.h
- 16

The remaining 4 triangular wedges are again cut up si.milar'ly to
yield 4 rectangular wedges which can be arranged in pairs to

. —b h a—b
form parallelopipeds of sides E—(%—), v and T
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2.m(a—b) a—b h h

The volume of these= 3 C g - g =m@—b). &
The remaining 8 triangular wedges when treated similarly pro-
7 (a—b)2. h

duce 4 parallelopipeds of combined volume T

This process is to be repeated till the remainder triangular
wedges are infinitely small and so can be neglected.

Then the total volume of all these parallelopipeds together

m(a—b)? L1
" —% hld+g+5- )
m(a—b)? h 1.4
) 16 T4
4 =(a-=b).h
-3 16
.. The volume of the frustum
_ mb? _ a—b 4 = (a-b)?
_T.h+,.b. T'h+—§ . T h
— 21 b2
- "T'h (b2-ab—bef 2FD2—2aby
3
_=h 3 b24-3 ab—3 b24-a%4b>—2ab
=, 3

_ mh a’—ab4b?
=7 —3F
Series mathematics has played an important part in the develop-

ment of Indian mathematics, especially geometry and mensura-
tion.

8. 6. Mahavira indicates a method for calculating the volume
of a ditch round a circular, triangular or rectangular central
space with the breadth of the ditch gradually decreasing.! The
annulus is to be imagined to be stretched out into the frustum
of a long rectangular wedge and then the volume to be calculat-
ed with the length and mean breadth and height.

1G.8.S. VIIIL. 194—203.
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8.7. Mahavira arrives at the accurate volume of a tetrahedron
via a curious formula for the approximate volume and a still
more curious process of numerical manipulation.
WIF AT IRAIEATZS SATAGI S Afrasy |
fermt ot zoraewad = wEFgETEATIE |

(G. S. S. VII 30%)
(The cube of half the square of the side is multiplied by 10.
The root of the product divided by 9 gives the approximate
volume. This multiplied by 3 and divided by v/ 10 gives the
exact volume.)

/

\/("‘—;)3 10

Hence the approximate volume V, = 5 (where a
is the edge of the tetrahedron)
_ \lTO_ as
184/27
3
Then the exact volume = Vs . ——
A/ 10

. A/10. a3 3
18»\//2‘ ' \//1_0—
a3
= R
which is the correct expression.! But the source of the appro-
ximate formula is a baffling problem. Probably the product of
half the sums of opposite sides was accepted as the approximate

area of the base (i.e.a. --% ) and the approximate height was

taken to be /\/—«;2__ (2_;'_32

= l/_S_.__a when the volume will be ——1- a. 2 . ‘/__:3
3 3 2 3

B \/10 - a3
29473

TProf. Rangacharya thinks this is inaccurate because he equates the altitude
of the tetrahedron with its edge.
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With the correct expression for the volume of a pyramid known,
the calculation of that of the tetrahedron with the altitude cal-
culated as already shown is easy.

8.8. Besides these algebraical rules with numerical examples
following, Mahdavira sets a few numerical problems involving
equality of two volumes. A sample is—
YA AT9Y AALEATAT ANEH TN |
afseaUT STTHTTT FFRATE T FFgAIAsHFTAT |y
afqard fafsewr aar wwr aracEwaqot |
AR arcat sewA % ¥ 5fg o

(G. S. S. VIII 35, 36)
(There is a tank at the foot of a mountain, square in shape and
9 hastas in each dimension. From its top a column of water
whose section is a square of side one angula falls severed at the
top (when the water touches the tank). By that column the tank
is filled. Tell me the height of the mountain and the measure of
water in the tank.)
The problem is repeated with the section of the water column
changed into a circle, a triangle and a trapezium.!

8.9. Aryabhata II, Nemicandra, Sripati, Bhiaskara II and
Narayana have nothing new to add. But Sripati and Bhaskara
give the volume of a frustum and a tapering solid in very general
terms. Bhaskara’s enunciation being the clearer is quoted.

qEwgasad fawe asasd ga g% v |

A% gAY FUgH TARA TUEH |

ARG HAEd W gAE s wafa o (LI 217)

(The sum of the areas got from the face elements, the base
elements and the sums of these two, divided by six, is the area
of the equivalent pit of uniform depth. This multiplied by the
height is the exact volume. One third the volume of the pit of
uniform depth is the volume of a sizcf.) This comprehends beside
those for the prism and the cylinder the following formulae ;

1) The volume of the frustum of a pyramid on a rectangular
base with base elements a and b and top elements a’ & b’ and
height h

2G.S.S. VIII 37-44.
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- h {a.b+a’. b+ (a +al)(b+b')§
6

2) The volume of the frustum of a cone
{1:d2_+_7r.d2 - (d, +d,)}

6
o p 4, 1))
6.4
(d, and d, are the base and top diameters.)
3) The volume of a pyramid on a rectangular base

.h

2a.b.h
3
d®. h
4) The volume of a cone = 33

8.10. The Sphere

Till we reach Aryabhata 1 we do not come across any
authentic mention of the sphere,! and Aryabhata gives a wrong
formula for the volume of a sphere.
gfiorgaTd faseardgang gasad |
afsaT ot wess freades o

(A.B. Ganitapada. 7)
(Half the circumference multiplied by half the diameter is the
area of a circle. That multiplied by its own root is the exact
volume of a sphere.)

According to this the volume of a sphere = ——/\/Tr d?

_wdiz, g2

8

IThe Jaina works refer to Ghanaparimandala but we do not know what
exactly this means. Is it a cylinder or a sphere ? In the Uttaradhyayana
Sitra (c. 300 B.C.) there is a mention of a solid called isadpragbhara “which
resembles in form an open umbrella”. Its thickness is greatest at the middle
and decreases towards the margin tillit is “thinner than the wing of a fly
(Uttardadhyayana Sitra, XXXVI, 59-60) The Aupapattika Sitra says that the
depth decreases at the rate of an arguls for every yojana. This suggests
knowledge of the mensuration of a spherical segment. ( The Jaina School of
Mathematics by B. B. Datta. Byll. Cal. Math. Soc. vol. XXI, 1929).
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Nilakantha in his notes says that the formula is got by analogy.
The square contents of a circle could be represented as a square
whose side is the square root of the area. Hence the cubical
contents of a sphere aiso should be capable of being represented
as a cube on the same square base.! Elfering (see 8.3. above)
interprets this verse also differently so as to give the correct
expression for the surface area (not voiume) of a hemisphere.

Brahmagupta does not deal with the sphere. Sridhara’s
formula for the volume of a sphere is
TAEATHIATE TATCTAARIEAE IO |

(T.S. 56)
(Half the cube of the diameter of a sphere plus the eighteenth
part of itself is its volume.)
i.e. Volume= d%—}——zd—alg = -;—2—(13

This is obtainable from the correct expression for the volume of
a sphere by substituting

- B0 s )

Surface area x diameter

Then volume ==

6
_m.d.d_4/10.d5 19 194
6 6 6.6 36

Mahavira sets down
STATHATET T 77 NTATIGIE G )
AERUHT A oHATEH B wIfA 1
(G. §. S. VIII 28})
(Nine multiplied by half the cube of the radius is the working

formula for the volume of a sphere. Its tenth part multiplied by
9 is the exact volume.)

(since ©~=3 for practical purposes according to Mahévira)

U gfer &3 qgfoy reafafraagesang: & oF gesd o aneages
TEAH | T TN GHgRUTERARTIAEqT(q aeagaan e iy
FEAGLHEATEIeT 0T FIIW q1ga: 4!
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9 9 _ 8l

Ve=rs . 2
and Ve=r® . 10" 20

Since the accurate value of = is 4/ 10 this reduces to

Ve=1'3 = 13 nearly.
This is not far removed from the correct formula V == T‘; 7 T3,

Aryabhata II’s formula is

(Ma. Si. XIV. 108)

(Half the cube of the thickness of a ball combined with its own
eighteenth part is its volume)

. ds  ds
i.e. Volume of a sphere=—2——|—m

1948 38

R . JuC

Bhaskara and the later mathematicians give correct formulae
for both the surface area and the volume of the sphere.

gae e afca frasaraurs: w 9-
w7 w0 Jdeaieafa: Fegweda S |
Mereid aeft 9 & qeoo sarafreTy
wefvis wafa faad e sareas
(Lil. 201)

(In a circle, the circumference multiplied by one-fourth the
diameter is the area, which, multiplied by 4, is its surface area
going round it like a net round a ball. This (surface area) multi-
plied by the diameter and divided by 6 is the volume inside
the sphere.)

. . . d
1e. area of a circle=circumference . %

m d2 )
R — ¥ (7 rd

3
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The surface area of a sphere= 4. area of its great circle

=4
Volume of a  sphere = Surface area 26_r
z:?ﬂ: r3

Bhaskara explains the mode of derivation of the formula for
the surface area in the Goladhyaya of his Siddhanta-Siromani
(Vasana under V. 54-57).

“Take a sphere of clay or wood to represent the earth. Let its
circumference be 21600 kalas. With the point at the top as
;—6th of the circumference i.e. 225 kalas as the radius
draw a circle on the surface of the sphere. Similarly draw circles
with 2. 225, 3. 225 . .. 24.225 kalas. These circles will cover
half the sphere, dividing the surface into 23 strips and a small
circle at the top. The radii of these circles in their own planes
will obviously be the sine-chords of the arcs of the great circle
of the sphere. These are already known. If the strips going
round the sphere are cut and spread, they will be trapezia with
the parallel sides equal to the circumferences of the consecutive
circles and 225 kalas as the altitude. The sum of the areas of
these trapezia and that of the circle at the-top will be the surface
area of half the sphere.”

The same method is also given in the text of the Goladhyaya
three or four verses later, with the addition of longitudinal lines
cutting the surface into lunes.

merer afefl: Fet IgsweaTfaiaa: |
HEsTT@TERTAeS fed: 1)

TR FNTEARY AT FfCE AT

FeFig-FAGIN: T T TFEIA N
T FIAFE AHA GUS: AT |

adsqT fawsarddd fasavdwrfoay |
TF AAE a9 WY Aesqiads a9 |

afcfasaraartsat Nassws T |

Siddhanta Siromani, Goladhydya, Bhuvanakosa 58—61)

centre and
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(The circumference of the sphere is to have as many units in it as 4
times the number of sine-chords in the table of sines (i.e. 24.4=96).
With lines starting from the top and ending at the bottom, the
surface should be divided into as many parts as there are units
in the circumference—into parts which resem-
ble the natural divisions on the surface of an
amalaka (myrobalan) fruit. Then the area of
one such part (vapraka) should be found out
c D by dividing it into (n) parts again (by hori-
A g zontal lines at distances of one unit from each
other). This area of a vapraka will be equal
to the sum of all the tabular sine-chords
diminished and divided by half the radius i.e.
equal to the diameter. Hence the surface area
is the product of the circumference and the
diameter.

Fig. 4
The area of one vapraka =the sum of the areas of the trapezia
likek ABCD,CDEF

==2§/-\—B%—C—I—).altitude+ cb d; E F.altitude LTI }

_s_ir_)__(n_—_l)_a_ . alt.4

2xnr.sinna
—Zg 2wy +2nr 2nr.
2
2rroin(-Dadt2nr sn (oD g o

2nr.sina 4
+ T alt. }

=2 23r.sinna—sinna
2r

G r.sinna——)

2
r/2
This has been equated by Bhaskara to the diameter! of the

'Bhaskara’s knowledge of the mode of derivation is unéertain. See also
Infinitesimal Calculus in Indian Mathematics—its origin and development by
P.C. Sen Gupta—Jou. Dept. Ler. XXH. 1932 p. 1 fI.
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sphere and verified with respect to the sphere of radius 3438 by
actual calculation.

i.e. The area of one vapraka=d

.. The whole surface area=d .2 = .1

=4 r?

The rationale for the expression for the volume is given by
Bhaskara in the ‘Vasana’ under these same verses.
TEHIEETET  SIEI  STERgeanitd gEraattt Maqs gweatty
FEAATOT MATE G | GF GEGATAT AN AAHAFHGITAT o
(As many pyramids as there are units in the surface-area with
bases of unit side and altitude equal to the semi-diameter should
be imagined on the surface of the sphere. Then it is proper that
the sum of the volumes of the pyramids should be the volume
of the sphere.)

2
The volume of one such pyramid =- ! 3’ !
4nr2.r
The volume of all these together= 3
_4rnr
3

In Europe it was Kepler (early 17th Century) who found out
this method of derivation of the expression (Carl. B. Boyer—The
History of the Calculus. p. 108)

According to Narayana the surface area of a sphere is thrice
the square of the diameter, (G. K. Khatavyavahara. 6)

that is = 3d%2 - 4.3.r2

dia r
and the volume--surface area ™ ——m6—6ti
43.r8
3

Evidently he has not bothered to give the sthiilla and sitkyma
values separately for the surface area and volume of a sphere
(as he does for the areas of plane figures) and is satisfied with
the gross value obtained with = = 3.

8.11. Surface area of a sphere by integration

The Yuktibhdsd derives the expressions for the surface area
and volume of a sphere with the help of the differentiation-
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integration, which the Aryabhata. school uses with such success
on other occasions.
1The surface of the hemi-
sphere is to be divided into a
large number of circular strips
by drawing circles parallel to
the horizontal great circle
of the sphere at equal distan-
ces. Then as in Bhaskara’s
method, if these strips are cut
open and spread, these will be
trapezia with parallel sides
equal to the circumferences of
the consecutive circles on the
Fig. 5 surface of the sphere, and
altitude —the chord of the arc
between two  consecutive
circles.

The area of any such trapezium =
circumference of upper circle--cirumference of lower c1rc1e.chord

2

=-circumference of the circle through the middle of the strip x
chord.

.~. The surface area of the hemisphere -the sum of the circum-
ferences of the middle circles x chord.

Now the radii of these circles will be the sine-chords in a

quarter of the great circle of the sphere. Hence if Cis the

circumference of the great circle of the sphere, and r the radius,

the circumferences of the circles through the middles of the
. -y 2

correspondmgr sine-chord?. C Hence the sum

strips will be the
of the circumferences
C ,
= the sum of sine-chords

As has already been shown

1Y.B. pp. 272-282,
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Ist sipe chord x (whole chord of the Ist arc)?
rz
rence between Ist and 2nd sine differences.

=the diffe-

2nd sine chord x (whole chord of the Ist arc)?
ré

= the difference between the 2nd and 3rd sine differences

(Whole chord of the Ist arc)®

= . sum of the sine-chords

= sum of the differences of the sine
differences

= sum of the 2nd differences of the
sine chords.
=the difference between the st and 2nd sine chords minus
the difference between the last and penultimate sines.
If the arcs between the circles are very small the latter quantity
will be nearly zero.
Hence the sum of the sine-chords
= The difference between the Ist and 2nd sine chord
rZ
whole chord?.»

2
= Yxﬁﬁecgﬁfi 5;; since for small arcs, the sine-difference is

almost equal to the arc difference.
Hence the surface area of the hemisphere

= -(r:— sum of the sine chords . chord

C r2

= hord - chord .
=C.r

Then the surface area of the whole sphere =2 C.r=2.2=nr.r1
=4 r?
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8.12. Volume of a sphere bjl integration

For finding the volume,! the sphere is to be cut into circular
laminae by planes passing through circles drawn on the surface
of the sphere, as for finding the surface area. These are to be
of the same and uniform thickness equal to one unit. Then the
volume of any lamina

== the area of the circle through its middle . thickness

~— ms2. 1 wheresis the radius of the circle and is — the
corresponding sine chord .
Hence the volume of the whole sphere
= sum of the areas of the laminae . 1
c= (S St A +s:2) . 1 where s, , Sg.........
are the sine chords beginning from one pole to the other of the
sphere.

Now if h is the height of
/‘l'ﬁ\ double the arc whose sine-
) chord is s and d is the dia-

«— 5§

meter of the circle
s? = h (d—h)
_2h(d—h)
=
_(h4-d—h)*4-{h*-(d—h)?}
2

d2—{he 1 (d—hy }
- 2

Hence s;2+5,% + ......... Sn?
_ @—{h4(d—hy)? }
- 2

Fig. 6

d2—{h,24-(d—h,)2}+ ......
2

+
d2—{h,2}(d—h,)?
+ { ;-( )}
.:l. dz_,__zhnz _E(d—h,.)z
2 2 2
Now, if the sphere is divided into an infinitely large number of

laminae so that the thickness (one unit) of each lamina is
infinitely small.

1y.B. pp. 282-290.
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hy = Ad,hy =2 Ad hy= Ad...........
and d—h; =h,_;, d—hy =h,,........... ,d—h,_, = hy
i.e. s hy = 3 (d—hy)
Againg h%, = (A dE+ Q2 Ad2H+ ... + (nAd)?
= -q;— (n being equal to d)
.,z _ M 2433 d®@ 4@ d
s, =g o =y

Hence volume of the sphere = = 362 . 1
e _4rme
T 6 3

As the editors of the Yuktibhdsa show, these methods of finding
the surface area and volume of a sphere are the same as the
modern integration methods which were discovered in Europe by
Newton and Leibnitz.
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GEOMETRICAL ALGEBRA

9.1. The practice of representing and solving algebraic and
arithmetical problems geometrically is as old as geometry itself.
The Sulbasiitras find v/~ 2,4/ 3 etc. (theoretically the square
root of any number) with the help of squares and rectangles.
For v/ 2, the Sulbasitras have
e gl
{dp. SL 1. 5)

(The diagonal of a square of unit side will be \/ -7)— The Sans-
krit word for A/ 2 is dvikarani, the maker of twice the area.

s frda fawoaTaT: aETEIATTS R T | (dAp. SL 1L 2)

(One measure is the horizontal side and the dvikarani is the
length. Its diagonal chord will be the trikarani, the maker of
an area of 3 measures) i.e, v/ 3. In this way by drawing
rectangles with sui able sides the square root of any number
can be found. The method is extended to fractions also. For

finding 4/ "3 ie. the one-third maker, Apastamba supple-
ments the foregoing siitra by

AEFTOAAT =qreaTaT, THOISrTRY Ta| | (dp. SI. 11. 3)

(The one third-maker has been explained by this. The divi-

sion is in nine parts.) The meaning of this cryptic statement

is made clear by the corresponding sitras in the Katyayana

Sulbasiitra.

FATFTAIA STEATAT, FRINFINRG AT | FONGAE AT FANTITERA-
wAAHT

(K. SI II. 15-18)

(The one-third maker is expounded by this. The division of
the measure (of the area) is into 9 parts. One-third of the
karani ie. the side of the square makes one-ninth (of the
area). Three ninth parts have one-third as its karani or

maker).
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The square drawa on one as side is to be divided into 9 equal
parts. 3 of these small squares are to be combined into one
square. The side of this square will be /.~

The same method can be and is used for evaluating 4/ a-+b?
and 4/ a>—b? where a and b are any rational numbers. A
rectangle is drawn with a and b as sides. Then its diagonal
will be 4/ a*+b?._ Here (as also in evaluating 1/ a2 - b? ), the
purpose of the Sulbasiitras is really more geometrical i.e. to
combine two squares into an equivalent square and the me-
thod is
g W i geEfeadq FereneTa e awety |

(dp. SI. 11. 4
(A segment should be cut off
from the bigger square by the
side of the smaller square. The
G diagonal chord of the segment
H —— . _ F  will combine the two squares).

D C

A B E
Fig. 1

To get a square equal to the difference of two squares, the cons-
D c tructiczn1 is intially the same as
that for finding the sum of two
B g squares. But instead of joining
the diagonal, the lower side
Y AB of the rectangular segment
cut off, i.e. ABFH, is to be
raiseddiagonally with one end
B P (A) fixed, till the other end
Fig. 2 touches the upper side HF of
the segment at B’. Then HB’ is
the side of the required square.
For HB'2= A B’2 - A H2.
The construction is ingenious though basically it is a simple

application of the theorem of the square of the hypotenuse.

H

1dp. SLILS.
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9.2. In later days, most probably in the wake of the tradi-
tion of the Sulbasiitras, geometry was called in to validate alge-
braical rules, but there is a shift in the emphasis. The Sulbasiitra
writers were primarily interested in geometrical constructions,
the implied algebraical truths coming in by the side door. But
‘'with the later mathematicians the algebraical results are the
most important, the geometrical figures being merely an aid to
make the algebraical results the more immediately convincing,
or to prove the results.

In Brahmagupta, Mahavira and Bhaskara II such use of geo-
metry is limited. The section on rational triangles and quadri-
laterals, to which elaborate attention is given by all these
authors, may be called geometrical algebra. But, except for
the drawing of the figures themselves, the whole manipulation
is algebraical. Later, the commentators especially Bhaskara’s, do
give diagrammatical corroborations of algebraical formulae.

9.3. Thus to demonstrate a?—b2=(a 4 b) (a—b), Krspa
D cn G Daivajiial (1606 A.D), the au-
thor of the Navankura commen-
' tary on the Bijaganita of Bhas-
¢ kara takes two squares of sides
E F aand b. A square equal to the

smaller square is removed from
A FF B the larger. The remainder will
be a gnomon of width (a—b).
The gnomon is cut into rect-
angles of length a and b and the

H

Fig. 3 two are joined. Together they
form a rectangle of sides (a-+-b)
and (a—b).

Hence a2—b%*=(a-+-b) (a—Db)

This method of demonstration is adopted by Ganesa also in his
commentary (1545 A.D.) on the Lilavati.

1Bhaskariya Bijagapitam. Anandasrama Seriies No. 99. p. 150.
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The rationale for (a4b)2—a2-.b2=2ab is also given diagra-
De---8----Ge-b-» C matically.! From the square of side
a + b when squares with sides a
and b are removed, two rectangles
of sides a and b remain.

> a
Hence (a +b)2—a?--b%=2ab
E F K
%
°
A H B
Fig. 4

For indeterminate equations of the form ar 4 by 4¢ = xy,
Krsna gives a geometrical method, saying
gt fafaar sfeq 1 fig sewfadmgadefafeear o axfr ar &
TFIET ) a9 38 i rfaiat=
(Here the rationale has been written by the master. But due to
the errors of the scribes and a break in the tradition of instruc-
tion, that (rationale) is not now capable of fulfilling its purpose.
Hence the rationale for Bhavita is given in detail.)

The product x y may be represented by a rectangle of sides x

L Ea ’ and y. This should contain a xs
b b ys and the absolute num-
v  ber of unitareas,c. Mark off

a xs in the figure. Now the
remaining rectangle being only

l y—a in length, the full y’s cannot
be marked off. Hence mark off

(y—a) b times. Here each y—a

is less then y by ‘a’ units

.. b (y—a)’ s are less than b y’s

X

Fig. 5

bid. p. 152.

2Ibid. p. 196. E.T. Bell who says (Development of Mathematics 1945
p. 125) that the letter Bha is the sign of multiplication in Indian Mathematics
is perhaps misled by the term Bha appearing with the product x.y in the
context of Bhavita.
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by ab units. If on the other hand, b full y’s are first mark-
ed off, we will be able to mark off (x—b)’s only and again
the deficiency is ab. Hence, this ab must be contained in the re-
maining part of the diagram. According to the given equation
the rectangle x y should contain besides a x & b y, ¢ also. Hence
the rest of the diagram must be composed of ab and ¢. Let one
side of this remainder rectangle be k.

Then the other side is gtl)(ic

Thenk +a ==y

ab4 ¢
_T—-**-b—_'x

If a and b are negative, the method has to be changed slight-
ly. Since — ax — by + ¢ == xy, add ax + by to both sides.

Then xy + ax 4+ by = c.

The diagrammatic representation of the left-hand-side will be
a rectangle xy with a x’s and b
- 5 y’s annexed to it. To fill up the
empty corner a. b units will be
s/ I required. Hence the bigger |rect-
angle will contain ¢ 4 ab units.

As before, choose one side k
Tt T -« arbitrarily. Then the other side
Fig. 6 =EPY+_C

Hencex = k — b

and y .—:_a_Bk_—*—_(_: —a

When c is negative a and b may be greater then y and x. In this
case the two rectangles ax and b y are to be superposed at one
corner.
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Then one x yis to be added to

D i 8 -—-G--» ¢ this figure togeta x 4+ by and
» 1 4 since ax4+by—c=xy, the
i x’ ! figure should be equal to c. Now,
°l e ¥ if the empty corner is filled up,
N Il Al >yH ¥ the area of the whole rectangle
Vi A B _ ab

———— °

E€=—-y-—F X
Fig. 7

The area of the rectangle H K = ab — c.
So, if k is one side of the rectangle, the other side is

ab-—c
k

Then b —k = x and a — abk-—c =Y
9.4. In the Aryabhata school of mathematics the use of geo-
metry to substantiate algebraical results is a regular feature.
Bhaskara I offers a geometrical explanation for ;— . —15— == ilf)
T T T T 1 If one side of a rectangle is di-
5 ___;_ - _;_____i_ - _;___ J vided into S equal parts and the
I 1 ! ' other into 4 and parallels are
root- - +o-t- _!' ~7] drawnthrough these points of
1 [yt oF-=4=—t=— division, the whole figure is divid-
L T ed into 20 parts and the sides
5 of each small rectangle are

Fig. 8 ;— and % of the corresponding
sides of the original rectangle.
1 1
?_ . -4———— 2‘6’ .
9.5. The full bloom of this geometrico-algebraical imagination
found in Nilakantha Somayajin and his followers, the authors
of the Kriyakramakart and the Yuktibhasa.

1dryabhatiyabhasyam p. 55. Also Y.B. pp. 37-38.
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The product of any two unequal numbers can be represented
as a rectangle (ghataksetra-= multiplication diagram) with the
sides respectively equal to the given numbers.!

]
1

figure. If the two numbers are equal the

diagram will be a square.

< a » There will be a .b units of area in the

r-Tr—r——

Fig 9
For a (b 4 b,) the representation will be as in fig. 10, i.e., the
strip A’ B containing b, rows of ‘a’ small squares is to be tacked
—mm e A em e — on to the rectangle A C representing
D a . b. Similarly for a (b—b,), b, rows
V each containing ‘a’ sma!l squares have
to be removed from the rectangle.?

ArH————T1T"B
-O.—TT#-TTJ _t--
YA B
Fig. 10
T
NIRREN 70T (a—a,) (b4-by) will be represented® by
IR R A T
i |
441 j "
Fig. 11

Another multiplication result demonstrated geometrically* is

a
ab = (a + ay) (b_b.m—)
This is shown with a = 12, a;, = 4 &b = 20

1y.B. pp. 7 & 8.
2Ibid p. 9.

31bid p. 10.
41bid pp.12-13.
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A ) sy

b e,
sva,

Fig. 12

9.5a. Division, being the inverse of multiplication, is also capable
of being demonstrated diagrammatically.! The dividend can be
represented as a rectangle with one side = the divisor. Hence,
if we go on placing rows of squares equal in number to the
divisor, each parallel to and touching the previous one, till the
total number of small squares is equal to the dividend, the
number of the rows will be the quotient.

9.6. Next is given the familiar demonstration for

(a + b)?—a? 4 b? 4 2 ab.

a
Do H C ABCD represents (a-4-b)2. Through
a points of division of the sides parallels
al are drawn, when the squares a? and b?
a|ab and 2 rectangles result. The sides of
E F therectangles being a and b, the result
. ab (2 4+ b)2 = a? - b2 2 ab is establi-
b b shed. The method can easily be
A G B extended to the squares of the sums
Fig. 13 of any number of terms.
[4 b a
ac ab " )
be | 2 ab |b
c?| pe ac c
Fig. 14

'bid p. 15
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Similarly fig. 14 can easily establish the equation (a-b+-c)?

=a?4-b24-c2}-2ab+4-2bcf-2ac.

For showing that 4 ab + (a—b)2 = (a 4 b)? the four rectangles

a . b are arranged as shown in the figure! Then the side of
M the square at the middle i§

b 2 P C evidently (a—b).

o
\
\
\
-

- A If the diagonals of these rectangles
N \ a-p \ other than those which pass through
\ S the corners of the square are joined,
o \ the same figure will serve to sub-
\ [ stantiate another result. Since the
v Pl diagonals divide each rectangle
Tid into equal halves the inner square
A K B KLMN ie. the square on the
Fig. 15 diagonal = (a 4 b)2 — 2 ab
= a? 4- b2 }-2ab—2 ab
= a? + b2
(The author of the Yuktibhdsa says (p. 35) that cubes and cube
roots are not treated in his work. The geometrical demonstra-
tions for (a 4 b)® etc. are given in the Kriyakramakari whose
author is perhaps a pupil of Nilakantha himself.)
9.7. Next the formula (a 4 b) (a—b) = a2—b? is assigned a
a geometrical explanation.? The rectangle A C represents the
ghataksetra (a + b) (a—b). DK is
marked off equal to a. The strip
KGBC is removed and applied to
the same figure along AG to
occupy the new position AELM.
Now DE = a—b 4+ b = a. The
M square on DK is completed. Then
N\ g square DF = rectangle DG + rect-
\\\\\\\ angle AL 4 square MF.i.e. a2 =
E L F rectangle DB 4 Sq. MF i.e. a? ==
(a +b) (a—b) 4 b% or a*—-b? =
Fig. 16 (a + b) (a—b)
9.8. The necessity for reducing fractions to a common denomi-
nator before they are added or subtracted is also explained

"I1bid p. 20.
21bid pp, 24-25.

D€E—3—>3Kyp C

P> ea-b—o

VI
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concretely i.e. geometrically! For example, taking 41T and %,

-}1— is one part obtained by splitting a strip of length 1 unit

parallel to the breadth into 4 parts, whereas 15— is to be obtained

by splitting a similar strip into 5 equal parts. Now if the ‘11 th part

is again divided into 5 equal
parts and the 1/5th part into 4
equal parts, these smaller strips
of the two will be equal in size
so that any number of strips
from one can be counted to-
— gether with, that is added to,
Fig. 17 any number of strips from the
other.
9.9. The editors of the Yuktibhdsa show how the multiplication
of fractions can be demonstrated geometrically. The method,
they say, is explained in another work (granthantara) and is
quite simple and easily understood from the attached figure.?

oo

Fig. 18

The Kriyakramakari, an elaborate commentary on the Lilavati, is
another important work belonging to the Aryabhata School.
This two has a definite bias towards geometrical reasoning.

1bid p. 37.
*Ibid p. 41. footnote. One does not know what this other work is.
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9.10. The demonstration for (a 4+ b)®> = a? 4 b? + 2 ab is the
usual one. But for showing (a 4+ b)2 = 4 ab - (a—b)?, a
slightly different procedure is adopted.!

K
r

N\

Let the figure be cut up as shown
so that AB, :: a--b = D,C,
and B, B, = C, C, = b. Remove
G the rectangle AB,C, D, and
F place it in contact with square

D E
! \\01 C C, as shown. so that rectangle
\ C; G represents ab and CGHK

H Let ABCD represent (a + b)%
1

represents (a—b)2. Now there are
- four rectangles a b left after C G
A B,B, B H K-—=(a by is removed from
Fig. 19. AB CD .(afpb)d Arrange these
to form the outline of a square. The sides of the square are
(a + b) and the sides of the inner square are (a— b).
o (a4b)?-=4ab+ (a—b)
Here is double proof, one by cutting up (a+b)? and the other
by building up (a - b)? from 4 a b and (a—b)2.
9.11. If a square A B C D of sides a is cut up into rect-
angles by a line EF parallel to one side and at a distance of b

from it, it can easily be shown? that a®> .. (a { b) (a--Db)
ot et g + b2 The rectangle AEFD can
\ be applied to the rectangle F E B €,

so as to get the rectangle F C L K
of sides (a +4- byand (a — b) with a

square of sides b jutting out of it.
\\\ [ (a4 b)a —b) + b . az
L
7

Fig. 20
9.12. Though this is proof enough for(a + b) (a - - b) =a®—b?
also, a separate proof? is given starting with a rectangle of

1K.K. p. 9.

2fbid p. 60.
31bid p. 61.
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sides (a + b) and (a — b). This can be cut up into 2 rectangles
a(a— b)and b (a — b) by the line EF. Againa (a — b) i.e.
AEFD isto be cutup intoa square of sides (a — b) and a
rectangle b (a — b) by the line GH. Apply, the rectangle AGHD
to the square (a — b)% so that its long side coincides with
GE. Now we get a square of sides

DT Aty —— ., ) 1
; N““ R © a with a square of sides b unfilled
ot \ one of its corners

AN

-~

‘\\ ® . {a4by{a — b)-=a? - b2
\\ .

NN -____i
Fig. 21

9.13. That (a — b)¥=a34-b3+3a%b 4+ 3ab? is demonstrated!
by cutting up a cube of sides a + b into 8 bits by planes paral-
lel to the faces and alternatively by building up a cube of side
a -+ b from two cubes of sides a and b respectively and 3 rect-
angular parallelopipeds of sides a, b and a + b.

9.14. Another equality of the third degree demonstrated geomet-
rically?isa(a +i1) (@ —1) — a® —i% a

From a block of length a + i, breadth - a—i and height - a,
a piece of breadth i can be cut off from the length and joined
to the breadth, so that both equal a. But at one corner a por-
tion with a square base of sides i and height - a will be left
unfilled up. Hence the formula.

9.15. After explaining Bhaskara’s rule for Sarmkramana the
Kriyakramakari has an interesting passage.

wE  UEHEITREaETTTaersy  great gregi  fafkarani wfwgamad o
fawfoar #rdfaegafesd faawrarer aframagfeafed ao gg@duavT ) &
fes arawemfwwgTRwamice faeay )

(p. 202)

'ibid. pp. 92-94.
2Ibid. pp. 94-95,
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(With two of the combinations of two quantities viz sum,
difference, product, sum or difference of squares, sum or differ-
ence of cubes and the quantities themselves known the two
quantities can be obtained. This can be done in 21 ways. Thus
the Brahman, Citrabhdnu, by name, well-versed in the rationale
of computations and astronomy has instructed. Instructed as I
am by him, I write 2 little of it here.)
This Citrabhinu must be the same asis noticed in the Kerala
Sahitya Caritran of Ullur S. Paramesvara Iyer as the author of
a commentary on Bharavi’s Kirdtarjuniya and an astronomical
work by name Karanamrta. His date is given as 706 M.E. cor-
responding to 1524-25 A.p. [t issad that we know so little
about the mathematical achievements of this mathematician,
held in such reverence by the author of the Krivakramakari.
Most of Citrabhanu’s methods of calculation are algebraical.
But characteristically enough, the logic of the procedure is often
demonstrated graphically. The results so treated are:
1. When a 4 b and a® — b3 are known
4G b (a—by
3 (a + by =
with a + b known, a and b can be obtained by samkremanat
a® — b® may be represented as a cube of side ‘a’ with a cube
of side ‘b’ scooped out of one of its corners or, as the Kriyd-
kramakari puts it, as a floor a — b thick with walls of the same
thickness standing on two adjacent edges. The two walls, sides
a and b and b and b, are to be separated and laid flat on the
ground so that they form a rec-
tangular block of sides a + b
and b. The floor, a square block
of sides ‘a’, is then to be joined
to thisso as to be continuous
with the larger wall. Then we get
A a square block of sidesa + b
with a corner of sides a and b
b unfilled. Three of the four
(a® — b®) blocks are to be treated
F E i
similarly.
Fig.22 Then the empty corners will be

ibid p. 209.

a -- b, whence

D b
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three a. b blocks. The fourth a8 — b® block is to be cut up so
as to yield these three a. b blocks. The wall ‘a’ in length chop-
ped just above the floor, yields one such block. The other wall,
if chopped along with part of the floor, is another block of the
same size, while the remainder of the floor is a rectangular
block of the same size but with a square block of sides (a — b)
projecting at one corner. Since its thickness also = a — b

€C-———a ———> the projecting block is a cube of
"\ sides (a -~ b). Thus, if a cube of

sides a — b is removed from
4 (a® - b?), the latter can be arrang-

N 27 P ed as 3 square blocks of thick-
l ness (a — b) and sides (a + b).
. 4 (a3 — b%) — (a—b)® _

Fig. 23 Hence T@ F bF = a b

Though the identity thus geometrically demonstrated is sound,
since the equation is cubic and the quantity to be found out i.e.
(a — b) appears on both the sides, it does not help in the deter-
mination of a — b except in some isolated cases. The remark
applies also to the identities which follow.
2. When a — b and a3 + b3 are known,

atb— {4(a3-+» b%) —3 (a-+ b) (a _b)z§*

1Here a® + b® is representable as a cube of side ‘a’ with a
cube of side ‘b’ placed on top of it (if a is larger then b), with
two of its faces lying along the same planes as two faces of the
lower cube. The jutting portion of the lower cube, which will be
a gnomon of thickness a — b, height a and combined length of
limbs (a + b), is sliced off. A second (a® + b% set is similarly
treated. Then the two gnomons are placed on the 3rd and the
fourth a® 4 b® blocks sc that they fit around the top b® blocks,
but leave a gnomon of height (a — b) projecting. This project-
ing portion is cut off. Thus we get two pillars on square bases
of sides ‘a’ and height (a 4 b) and two pillars of sides ‘b’ of
the same height. These four can be. put together to form a cube
of side (a + b) with a square prism of length (a +- b) and sides

ibid p, 213.
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(a — b) projecting out of it. The unused part of the gnomons of
the first two (a® + b?) blocks also, wien the limbs are separat-
ed and joined lengthwise, yield similar prisms. Hence four
a®4-b? block yield a cube of side (a + b)along with three
prisms of length (a 4 b) on a square base of sides (a — b).
Hence (a 4+ b)® =- 4 (a® +b ) — 3 (a +b) (a —b)%
X a3 —b3—(a—hb)?
3 (a—b) =
For this also a geometrical explanation is attempted. “The
rationale of this has been already shown in the context of cub-
ing. When two cubes are placed so that one each of their cor-
ner-edges touch each other (without the faces touching), to
their three sides are to be attached three blocks with breadth and
height equal to the two quantities and length equal to their
sum. As the cube of side equal to their sum results, when these
5 blocks are joined properly, the difference of the cubes (is ob-
tained) when the smaller cube is removed. The two cubes are
separated. Then two bits as also three products of the bits re-
main. Hence their sum is obtained by dividing by thrice their
difference.” The latter part of the passage looksconfused. The
demonstration can actually be the same as the one given for the
next equality.

3. 'When.a--b and a3 -b? are known ab

at—b*—(a—b)3

Jab

2The rationale is implied in the graphical representation of

(a -+ b)3. In the cubical block there are 5 blocks viz., the cubes
of the two parts and rectangular blocks of sides equal to the
two parts and the sum of the parts respectively. If now we
make the whole cube represent a® and remove one of the
cubical blocks contained in it, the remaining blocks will
represent 23 — b3 and the cubical one among these will represent
(a—b)3.

Hence a®--b3® = (a—b)® + 3ab (a—b) or
a’—bd— (a—b)?

3 ab

=a—b

4., When ab and a®- -b3 are known

a—b =

bid pp. 216-17.
2|bid pp. 221-22.
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orto get a—b, a3—b? is to be divided by 3 a b after being
diminished by the cube of the quotient so obtained.

5. *When a? -+ b? and a» + b3 are known, the quotient got
by dividing a3 4 L3 by a? 4 b2 is the smaller of the two quan-
tities a, b. The remainder when divided by a? + b2 diminished
by the square of the above quotient, gives a—b.

Let a piece of the height of the smaller quantity (b) be cut
off from the larger cube (a®) and let this be joined to the smaller
cube b3, Then we get a block answering to (a2 + b2). b. The

“——— a —- remainder block is a? (a—b).
Hence the integer got by divid-
b? ing a3 4+ b3 by a?+ b? is b.
The remainder when divided by
a? I. e. a? 4+ b? diminished by the
square of the above quotient,
yields (a—b). Except when a—b

Fig. 24 = 1, the quotient of division of

a3 4+ b> bya? 4 b? should not

be taken as the largest but the one after subtracting which from

a?z 4+ b2 it is possible to divide the remainder by the difference
without leaving a remainder.

s Bemb 4—b ——a

6. *When a? + b? and a®—b3 are known

2 (a—b%) + (a—b)p _
v 3@ 4 by -

a—Db.

From the difference of the cubes representable as a platform
(or floor, the Samskrt word is ku¢tima) with walls at two adjac-
ent edges i. e. as a cube of sides *a’ with a smaller cube of  side
‘b’ scooped out at one corner, the kuftima which is (a——b) in
thickness is sliced off. The two walls also should be separated. These

Ibid. pp. 222-24.
2[bid pp. 224-25.
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will be a rectangular block of sides
/ a and b and a square block of sides
b, both having the same thickness
(a—Db).
If the kuttima and the square wall
are joined together we get a larger
block of area of section a2 + b2 and
thickness a—b. A second (a®—b3)
block is subjected to the same treat-
ment. Then we get four blocks cor-
Fig. 25 responding altogether to 2 (a?4-b?)

(a—b)and 2 a b (a—D).

Now 2a b == a?+ b? — (a—b)?

. 2ab@—b) == (a® 4+ b?) (a—b) - (a—b)?
Hence 2 (a® + b%) = 3 (a? 4 b?) (a--b) — (a—Db)®

or 2 (a% + b3) is exactly divisible by (a2 4 b?) 3, if (a—b)® is
added to it. And the quotient is (a—-b). Hence the rule for
finding (a—b), viz., divide 2 (a® + b%) by 3 (a? 4 b?), add the
cube of the largest integer quotient so obtained to 2 (a® 4 b
to make it exactly divisible. The quotient is (a—b).

Here there is an effective mixture of geometrical and algebrai-

cal reasoning.
7. iWhen a2—b? and a3+-b3® are known, the quotient obtained
by dividing a® + b® by a2 -- b? is the larger number, a. The
remainder divided by the above quotient diminished by a2—b2,
yields a 4 b.

If the smaller of the cubes a® and b? is placed on top of the
larger, the projecting part of the larger block will be a?—b? in
sectional area and ‘a’ in height, while the other part will be a
prism on a square base of side b and heighta + b

Hence a® 4 b® - b2(a + b) + a(a?—b?)

a® +4- b¥ — b%(a + b)
ora = YR

Hence the rule.

11bid pp. 226-27.
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9.16. The lemma in the Lilavatil that a24-b®— | will be a per-
fect square, if a - 8p* + 1 and b - 8 p? (where p is any
arbitrary number), is furnished with an interesting graphical
proof by the Kriya-
kramakari?

'Y <

TP PY )

(8 p) can be represented as a
o * square PQRS of sides 8 p*, and’
(8 p*)*= 8 p*. 8 p? as a rect-
angle ABCD of sides

ig. 26
8 p* and 8 p-. {;‘IgCD is divided into two equal parts by a line parallel
to the long sides, when the sides of these strips will be 8 p* and
4 p*. Apply these strips to the square PQRS so as to form a square
of sides 8 p* + 4 p? but with a square of sides 4 p* unfilled up at
one corner. -

But a? - (8 p* + 1)? - (8 p%)? + 16 p* + 1 Hence 16 p* 4 1
has yet to be used.

The part 16 p* -= (4 p?)% can be used to fill up the empty
corner in the larger square made up of (8 p%2 and (8 p3); i. e.
(8pt + 1)?2 + (8 p3) 2 can be converted into a square, with 1
only not included. Hence when 1 is subtracted from a? + b2
i.e. from (8 p* + )2 + (8p®2 the diffgrence can be represented
as a complete square.

The same demonstration with slight changes holds for
az—b2—1,

9.17. An equally interesting graphic demonstration is the proof
given by the Kriyakramakari®* for the -~expression §, = arr,.—l-a
for the sum of a geometrical progression. The proof is given
for a particular series, the geometrical progression with 4 as the
common ratio. But with 4 changed to r it is applicable to any
geometrical progression.

Let a long rectangular strip ABCD represent the (n 4 1)th
term of the progression.

1y, 63.
K K. 254
31bid p. 458.
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[ 4

D CCF C

A B B'E B
Fig. 27

 Let it be divided-into 3 (i.e. r- -1) equal parts, one of which
AEFD is again divided into 4 (i.e. r) equal parts. Three of
these smaller divisions i.e. AB'C’'Dwill be ¢ . } — } ofthe
(n + Dth term and hence equal to the n** term. The procedure
is repeated with the remainder B’ E F C’which is equal to
one third of the nt* term. Then we get the (n—1)** term. The
remainder when treated similarly will yield the (n--2)% term.
This process is repeated till the first term is reached. The part
left over will then be 4 of the first term.

Hence } the (n - 1)t term - the sum of n terms + 3 Ist
term

Whence, since % is r-l—l
a 1
-+ P
Su T Tl S a. r

a.m . -a

Or, S, =
r--1

9.18. The diagrammatical representation of a product as an
area is used in an unexpected context, i.e. while explaining the
famous problem of the uddinamana (the height of flight). Two
monkeys on the top of a palm want to reach a lake some dis-
tance from the palm. One of them rises vertically up into the
air for some time and then swoops diagonally into the lake. The
other climbs down the trunk of the tree and from its root pro-
ceeds to the lake. If the distance traversed by the two is the
same, what is the height of flight?

Deriving the expression for the unknown height of flight, x,
the commentator arrives at the equality.

b (h 4+ x)

b-k+p
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Or x(b+ k +p)=>b(h+x)
b h
k +p

For these final steps the Kriyakramkari appends a diagram-
matic corroboration.: x (b -+ k + p) can be represented as a
rectangle ABCD of width x and length (b + k + p).

from whichx -

Deb-> C To remove bx .from this,. a part of

- the rectangle, ‘b’ in length, is cut off
from ABCD. Then the length of
" the remainder is k -+ p and its width
is X.

¢ -=cX -=»

area of the remainder rectangle
k-+p

A €--ptkep--—->B-X -
Fig. 28

This is an example of an exercise in diagrammatic imagina-
tion which does not seem to further the understanding or esta-
blishment of the expression to any appreciable extent. The
school to which the Kriydkramakari belongs seems to have
formed the habit of finding satisfying corroboration in practical
demonstration.

9.19. A sign of asimilar dependence on diagrams for under-
standing and corroborating algebraical identities is found in the
‘Dhavala, Virasena’s commentary on the Satkhandagama. Says
Virasena :

fenareafargasiafaa aastaamafaadt s ga fFarrsefa ¢
framdmaastaafumeefy | 7 FR0R ! adeEufraida @i @
guestfd Far ad FAE Eear @¥ gr dfay adsaufafpaotaatc wafa
WA § o wafy

(Satkhandagama, Vol. 111, p. 44)

{When the square of the total number of credtures is divided by
that total number increased by its own half what is the result?
The result is the total number of creatures diminished by one-
third of itself. Why? The figure representing the square of the
number of creatures, is to be divided into 3 parts by lines
running from east to west. One of these parts is divided into
2 equal parts and joined to the other two parts; the width (of
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the resulting figure) will be % the total number of creatures.

This is the bhagayamaksetra.)

Al

B!

A B

Fig. 29

If the square of the jivarasi is to be divided by 14 of itself, the
square should be divided into 4 equal parts. One part is then
divided into 3 equal parts and the parts joined to the remaining
three parts. And soon. ie., if A (=a?) isto be divided by

(1 + li—) of itself, the square represgnting A should be divided

into (n -+ 1) equal parts, one (n + I)th part again divided into
n equal parts, and the parts joined to the remaining

(n + Dth parts to form a rectangle of lengtha. (1 + 111—) and

1
T¥n
Then the breadth gives the required quotient.

With hardly a mathematical work of the Jainas left to us, it is
very difficult to know how far they had yoked geometry to
atgebra, Still one can say that it is not unlikely that the Arya-
bhata School derived its love of geometrical algebra from the
Jainas.

breadtha . (| —

9.20.1. Sredhiksetras

We have already seen how the Kriyakramakari proves the
formula for the sum of a geometrical progression diagram-
matically. The method of diagrammatic representation was
applied more extensively to problems connected with Arithmeti-
cal progressions (A. P.). These representations go by the name
of $redhiksetras (figures of series). Mention and examples of
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Sredhiksetras are of late occurrence. But it is quite likely that the
conception and use of such diagrams is quite old. For, in the
Tantrabhdsya, Bhaskara I's commentary on the Aryabhatiya,
mathematics is divided into two sections, Rasiganita (mathema-
tics of numbers) and Ksetraganita (mathematics of figures), and
then Bhiaskara says

smaggrETIEEr Afoataaw: wfamr (fox ?) s fafgan f ey
& Ty
(Bhaskarakrtam Aryabhatiyabhasyam p. 55)

(Mathematical topics like proportion and kugtakara (indeter-
minate analysis) are enumerated in the mathematics of numbers;
series, shadow problems etc. in the mathematics of figures.)

Here Sredhi or series is included -under Kjetraganita or
geometry. Does this mean that series originally formed part of
geometry, the mathematics of figures? Aryabhata I ‘uses the
terms citighana, vargacitighana and ghanacitighana for the sum
of triangular numbers, the sum of the squares of the natural
numbers and the sum of the cubes of the natural numbers res-
pectivcly (citi means a pile and ghana means cubic contents).
These terms may be explained only if we assume that Aryabhata,
studied these series in relation to piles. And this is not improb-
able, since mathematics first developed in India in connection
with the construction of vedis, and slanting pile-like vedis (e.g.
the Samahya and Paricayya are included among these.

9.20.2. Yet, except for this hint, we do not find attempts at the
diagrammatical representation of $redhis in the earlier mathema-
tical works. The treatment of series in Mahavira’s Ganitasara-
samgraha and the Bakhshali Manuscript alone confronts us with
an unusual feature, namely series with fractional numbers of
terms. In the Patiganita of Sridhara and the Ganitakaumudi of
Narayana, on the other hand, besides series with fractional
periods we come across ones with negative periods, negative sums
and sums equal to zero. All these occur in connection with
Sredhiksetras only. Narayana’s description of sredhiksetras runs
AITRETFRALAT IqA TEATAT: FALAT Lo}

=B et At A fnaT ged g o
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AITFEUENAIAT: TqaqAT FITRAE; |
U Az g ey vt gmw gy o
wuR ATl e aaa-fad e
framTggd FHE el saadEEEl |
agurfoaaies faad o dnfoaT ar geaw

' (G. K., Ks, Vya., 73-75})
(The first term (of the series) diminished by bhalf the common
difference (C. D.) is the face, the product of the period and C. D.
increased by the face is the base; the period is the altitude
and the area is the sum of the series. The fraction of the altitude
multiplied by the C. D. and combined with its own face is the
base (of any segment of the trapezium.) If the face is negative
the two flanks will cross each other and grow. Then there will
be two triangles one positive and one negative with the base and
the face as the bases. The base and the face multiplied by the
altitude and divided by the base minus the face are the respective
altitudes of the triangles. The difference of their areas will be
equal to the sum of the series). The first verse represents an
A. P. asa trapezium with altitude equal to the period of the A. P.
But instead of making the face (or the smaller parallel side)

equal to the first term of the series, (a — —Czl—) is made the

face and < nd -+ a— —%—) the base (a is the first term, d the
C. D, and n the number of terms of the A. P.). Thus it is poss-
ible to have the face negative even when the first term of the A.P.
is not negative. The second verse gives

3--;—('*56”"'5) the method for calculating the base at

any intermediate position on the alti-

Y tude, i. e. when the altitude is any
fraction of the whole altitude. Since
this fraction of the altitude or period
need not always work out to bea
whole number, summation of series
with fractional number of terms be-
comes natural. Next we are given a

nd 5. ;i (POSITIVE)

Fig. 30 picture of the Sredhiksetra when

(a - %), i. e. the face turns out negative and we are told
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how to caiculate the altitudes of the two triangles making up the
whole sredhiksetra. The formula given is:
face

hl = —m . Whole altltude

base

a =
nd b, base — face

. whole altitude

(When the two triangles are considered as similar triangles, the
expressions for h, and h, will be

face
b, = base + face (hy + h2,)
base
and b, base 4 face (hy + hy)

But we have to remember that the face is a negative quantity
here and that is why Narayana makes the base minus the face
the denominator.)

The difference of the areas of the two triangles will be the sum
of the A. P.
Sridhara’s account (Patiganita V. 79-85) is similar to this, except

d .

that he makes a — 5 the base of the figure, so that itis
narrower at the base and wider at the top like a cup (sardva).
Also for the actual construction he recommends the construction
of the series figure (Sredhiksetra) for unit altitude. (This is called
hastikaksetra since the unit used is the cubit, Asasta or kara).
Then the face of the actual series figure with altitude = the
number of terms in the series is to be calculated using the princi-
ple of proportionate increase.

As illustration, Narayana, as also Sridhara’s commentator
gives a number of A. P. s with drawings of their Sredhiksesras
and calculations of the elements of these figures. One of these
has the first term a = } the C. D., d = 3 and the period, n=3}
(G. K. Ks. Vya. p. 88, V. 62). The face of the Sredhiksetra

1 3

isn-— o = —1.

2 2

The figure then takes the form of two inverted triangles joined at
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their apexes and the altitudes of the
two triangles are $ and 3 res-
pectively. The next example (p. 89.
V.63) has a=3 d=7 and

e ; The face of the sredhiksetra

. 7 —1

is here 3 — =y The base=
Fig. 31 - 1 1

= nd - face = —y =3 and

. . 1 1
the altitudes of the two triangles are T and 17
Hence the sum of the A. P. is zero. (The figure is not shown).
The next two examples (p. 90., V.64 & 65) have negative
periods. The conception of a series with negative period is even

stranger and more difficult than of one with fractional period.

9.20.3. The inverse process of converting a trapezium into an
A. P. is detailed in

qRIgAtaaT; SeuvEIagy aeTarta
[t Tes: wmﬁrmvrfw%wgwwa I
& qe g AH! AR ISATFEHIET I |
sifgeaiata: @ ar=en fauaaged
(G.K., Ks. Vya., pp. 76-17)

(The base dimininished by the face and divided by the altitude
is the C. D, the face combined with half the C. D. is the first
term: the altitude is the period and the areais the sum of the
A. P. If the face is negative, the first term and the C. D, can be
obtained only if the altitude at the middle is equal to the altitudes
at the vertices, not otherwise in a quadrilateral of unequal sides.)
The restriction in the second verse seems unnecessary, since, in
any case, the quadrilateral has to be a trapezium, if it is to be
represented as an A. P. In his example for a visama quadri-
lateral (G. K., Ks. Vya. p. 93) the author himself calculates the
area as if the quadrilateral is a trapezium.

In. connection with this reverse process too. Narayana has, it
is noteworthy, an example where the area of the trapezium and
hence the sum of the A. P. is zero and the figure takes the form
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of two equal triangles joined with their apexes coinciding, the
whole somewhat resembling the wave pattern traced out by an
alternating current,

9.20.4. The nature and the use of Sredhiksetras after Narayana
Pandita seem to be altogether different. This use is met with
chiefly in Nilakantha’s Aryabhatiyabhasya and the Kriyakrama-
kari, written probably by a pupil of Nilakantha, The former
introduces fredhiksetras to establish the correctness of the sum-
mation formulae given by Aryabhata. Commenting on Ganita-
pada, verse 19,

T 30 afod FEAEI AHEHEA |

wenfuafread @aaraw @A |

Nilakantha explains how a Sredhiksetra is to be constructed. A
rectangle is drawn with one side containing as many units as the
period n and the other side as many units as the last term, /.
Divide the side — n into n equal parts by lines parallel to the
other side and the side == linto 1 equal parts similarly. Now
the figure is divided into strips containing 1 small squares each.
In one of the outermost of these strips keep only as many small
squares as there are units in the first term, a, and wipe off the
remainder. In the second strip keep a -+ d squares and wipe off
the rest. In the third keep a - 2 d and so on, till the last row
is reached in which no square is to be erased. Now the
Sredhiksetra is complete and looks like A B C D in the figure,

A D
'''''' bl
""""" N
R A 2
B c
Fig. 32

To get the sum, lift the first strip and join it with the last strip so
that their lengths lie along the same line. The length of the strip
is now 1 4 a. Join the second strip with the (n—1)th strip. Its
length also will be 1 4~ a. In this way join one strip from the
upper half to one strip in the lower half and complete the

process so as to leave Ijl" strips of length a 4+ 1. Then the area
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of the rectangle thus formed is (a + 1). —-;“ This particular

method is applicable only when n iseven. When n is odd two
Sredhiksetras ,can be joined inverted so as to yield a rectangle
of sides (14-a) and n.

9.20.5. Aryabhata’s expression for the period n of an.A.P. is :
_ 1 §4/8ds+ (d<2a) — 2a
n_~2_§\ + 6~7%) +1§
where d is the C D, s the sum and a the first term of the A. P.
(Ganitapada, 20). Nilakantha gives a simple and convincing
geometrical proof for this with the help of sredhiksetras. Since
the expression contains the term 8 d s, take 8 d sredhiksetras.
Combine pairs of such figures inverted so as to form rectangles.
of sides a -- | units (known) and n units (to be found out).

There will be g— d, ie., 4d such rectangl.es. Join d of such

rectangles together by their known sides so that the unknown
sides lie along the same line as shown in the figure (Fig. 33).
Thus we get 4 big rectangles of sides
nd and (a4 1). Now join these 4
equal rectangles as shown in Fig. 34
below to form a square with an empty
square at its centre. The side of the
outer square will be the sum of the

Fig. 33 sides of the rectangle formed by com-
bining d pairs of Sredhiksetras, i. e.nd 4+ a + L.

<¢--n d-»

The side of the hollow square at the centre is the difference
of the sides of the rectangle, i.e.,
(@ + h)—nd., ie, 2a+ @m—1) d
— nd, i.e. 2 a~d. Hence 8 d sredhi-
ksetras together with a square of side
(2 a ~d) form a square of side
(nd 4- a + 1), i.e.

nd+2a+4 (n—1)d = 2 nd42a—d
i ie. 2 x nd + 2a—d

= 4/8ds + (2 a~d)
Fig. 34 . n;_,; {\/8 ds + (Ifiagd)?—Z a, §
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The author of the Kriyvakramakari gives the same proof after
remarking that the formula as given by Sridhara and Param-
e$vara agrees with this, while Bhaskara II’s expression is

V’z.d.s+(.<2*_ ~a)—at
d

The difference is because the former mathematicians arrived at
the expression geometrically using 8 d sredhiksetras, while for
demonstrating Bhaskara’s expression, 2 x d sredhiksetras are
used. The method is unsuitable when 8 d is an odd number, a
fraction, or a negative number.

9.20.6. To prove that the sum of the first n triangular numbers,
nm+ DHn42) m+1P—@m+1)
6 or 6

i.e. the citighana, is

(Ganitapada, 21) the same tool is used. The sum of the triangu-
lar numbers is Sy, i.€. S; + Spt.onennnnn.. +s,, where s, is the
sum of n natural numbers, i.e., if we construct sredhiksetras for
all the different sums involved, we will have n such figures all
similar but gradually increasing in size. Taking 6 such sets Nila-
kantha shows how a rectangular block of sides n, (n 4 1) and
(0 + 2) can be constructed out of these.

Out of the 6 sredhiksetras representing s, three rectangular
slabs of sides n, n 4 1 and unit thickness can be built up. One
of these slabs is placed flat on the ground and the second is
stood on its thickness with its breadth vertical and length

coinciding with the length of the first slab. The

third slab is now stood on its thickness with the
.: breadth vertical and length coinciding with the line
— = formed by the breadth df the first and the thick-
[TEX] ness of the second. The two will then coincide.

N

ni
Fig. 35
Now we have a floor of sides n and (n 4 1) and unit thickness
with walls of unit thickness and height equal to n externally and
(n—1) internally standing at two adjacent sides. That is, the

cuboid with its unfilled part will measure (n 4+ 2), (n 4- 1) and
n externally. Now three rectangles are formed from the 6

=
nEd
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sredhiksetras representing s,.,. These will have length n and
breadth (n—1). Two of these are stood on their thicknesses with
their breadth vertical and touching the internal surface of the
walls of the cuboid already formed. The third one is placed flat
on top of the floor of the cuboid. Now the walls and floor of
the cuboid are 2 units in thickness and the holiow part is ‘n’ in
length, (n—1) in breadth and (n—2) in height. Similarly if the
remaining sets 6 S,_,, 6 S,.4 ...65s, are subjected to the
same treatment, the hollow in the cuboid will be completely filled
up and no slab will be left over. That is, a rectangular block of
sides n, (n + 1), (n -+ 2) can be built out of 6 5 s,

s S n(n+16)(n+2)

The conversion of this formula into the alternative form

3 _
®+1) 5 o+ 1) is also effected without the help of

algebra by cutting off a lamina 1 unit thick from one end of the
above block perpendicular to the longest side (n + 2) and
using it to increase the height of the block at one end by one
unit. But, since the lamina is only (n + 1). n . 1,a portion 1
unit wide at the otherend will fail to acquire the increased
height n 4 1 i.e. a rod 1 unit square in cross section and (n--1)
units long is wanting to make the block a right cube of side
(n + 1). Hence the volume of the block is (n + 1)*—(n + 1). 12
Hence the expression.

The equality sn? = is also demon-

n.n+1)@n+1)
6

strated similarly by treating 6 x n2 as 6 sets of.n squares-of sides

L2, n, converting these into 3 sets of n rectangles of
length 2,4,....... 2 (n—1), 2n, and breadth 1, 2, 3,.... .. n—I1,

n and with these 3 sets building up a solid rectangular block of sides
n, (n+1) and (2n+1).

9.20.7. For sn® — {Jl(“_z*‘_‘)_}z a slightly modified method is

used. Since E—(E—zii

is the sum of the natural numbers,
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n (n+4 1)72
————r§ can be represented as a square block of side

n(n —+ 1)

each and thickness one unit. Cut off a gnomon of

wrasms width n units from this block, which is
[HERA * then, in its turn, to be cut into small blocks
beginning from the corner. The block at the
corner is a square of side n. The remaining
blocks on either side are to have one side
decreased by 1 unit progressively, i.e. that
Fig. 36 side will be respectively (n—1), (n--2)
......... 1. Since the side of the original large block is the sum of
the natural numbers, the gnomon will be finished by the time
the block, 1 unit in width, is reached on both sides. Now keeping
the first square block of side n apart, we have two sets of (n—1)
rectangular blocks, each one unit in thickness and n units in
length, but with the breadths gradually decreasing by one unit
from (n—1) units to 1 unit. The first block from the first set of
width (n—1) units is joined with the last block of width 1 unit
from the second set to get a square of sides n units. Similarly
the second from the first set, of width (n—2) units, is joined with
the last but one in the second set of width 2 units to yield a
square of sides n, and so on. Thus (n—1) square blocks of
sides n units and thickness 1 unit are obtained. Now these
{n—1) blocks are arranged on top of the square at the corner of
the gnomon. The thickness or the height of the pile thus formed
will-be n units, so that a cube of sides n results.

i3?

T

By cutting off successive gnomons from the remainder of the
original block (the side of the remainder block is s,.,) of widths

(n—1), (n—-2y ...... 1, we can similarly build up cubes of sides
(n—1), (n—2) ...... 1. That is, the set of n cubes of sides n,
(n—1), (n—2) ...... I can be built out of the block of sides s,,

s, and 1 unit,

n(n+1) nm+1
2 : 2 .

ie. s nd =

={ n(n+ D 3
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The history of this formula and its proofin the West is interest-
ing in this connection.! Nicomachus, about A.D. 100, notes that
the series of the odd natural numbers yields the cubes of the
natural numbers, when its successive terms are grouped together in
groups of 1,2, 3, ... terms, i.e.as 1, (3 -+ 5),(7 +9 4 11)....
From this the expression for the sum of the natural cubes can
be easily derived. But Nicomachus himself does not give the
formula, though it was known to the Roman Agrimensores,
who derived all his mathematical knowledge from the Greeks.
Al-Karkhi, the Arabian algebraist of the 11th century, who,
according to Sir Thomas Heath, follows Greek methods as
opposed _to Indian methods, proves this result with the help of
a figure with gnomons in it. Such geometrical algebra is <dis-
tinctively Greek”, adds Health. Whether the Arabian mathemati-
cian derived his proof from the Greeks, or invented it himself,
or was influenced by Indian mathematics, we have to accept the
fact that in India there was a school of mathematics with a
distinct bias towards geometrical demonstration for establishing
mathematical truths—the school of Aryabhata.

9.20.8. The demonstrations of the above equalities as given in
the Kriyakramakari are substantially thesame. Only, after the
demonstration for the equality

N n(n+16)(n+2)

i.e. for the samkalita-samkalita, the commentator says

TR FrarE FAT qrafase aara:(?) |
THTEFIUE FTAT qraqr ghaeaar il

Ja qas‘rfaaw IAT NI qT FAAA: |
ad fea: g A e ?rg TI5=TT 1

(The product of any number of natural numbers, beginning with
the period and increasing by one, when divided by the product
of as many natural numbers beginning with one, will be the
repeated sum of the natural numbers, the number of repetitions
being one less than the number (of factors in the numerator and

1Sri Thomas Heath, 4 History of Greek Mathematics, 1, 108-10.
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the denominator). The rationale of this will not be easy to
understand and so is not detailed here.)
This statement symbolically means ss, or the second samkalita

nn-+41)®n+42)

1.2.3
Zm:{izz-(ﬂ—;tz—)— or the third samkalita
n(n+1)+2)@+3)
1.2.3.4
Zﬂ(n+1)(n+2)(ﬂ+3)
1.2.3.4
o nn+hH@+2)(n+3)(n+4)
= T.2.3.4.5 > efe. ete.,
nn-+1D...M0+4+r-—-1)

i.e.

i is the sum of the (r—1)th order

of triangular numbers. And the commentator implies that a proof
by demonstration similar to the one given above is possible
for all these equalities. Only, he does not choose to give it in
his commentary written for alpadhiyam hita, for the good of the
not very intelligent.! How one wishes that the learned commen-
tator had not left out the demonstration in this fashien. Already

n(n+1)n+2)

with 1 2.3 the three-dimensional cube is

reached. How will such a demonstration proceed with
n(n+ D)@+ 2)(n+3)

tc. S i
> 3 4 etc., unless one were to conceive

spaces with more than three dimensions ?
9.20.9. The Yukribhdsa gives a geometrical demonstration for the
square of any number n as the sum of the series 1,3,5,...ton
terms. The method is slightly different from the gnomon method
of the Greeks; in fact, it is the method of the sredhiksetra.
From the s$redhiksetra representing the
j: series of the n natural odd numbers, the
portion left in the bottom rows of the
19 figure after the n th small square, is cut off
and placed on top of the remainder to
Fig. 37 complete the square of side n. The method

1verse 4 of the verses of salutation at the beginning of the Kriyakramakari.
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is one of induction, the result of observation with sredhiksetras
of 2, 3,4 or 5 terms being generalised.

9.20.10. The difference between the sredhiksetra as conceived by
Sridhara and Narayana and as concieved by the mathematicians
of the Aryabhata School is quite obvious. With the mathema-
ticians of the Aryabhata School the sredhiksetra is only a tool
for the demonstration of equalities already known (except for
the possibility of the demonstration having to deal with multi-
dimensional space). But Narayana’s treatment is more in the
nature of an investigation into the possibilities of geometrical
treatment of arithmetical progressions. The result is the ability
to conceive A.P.s with fractional or negative periods and to
attach some meaning to such A.P.s.

This diagrammatic treatment of series seems to be a unique
feature of Indian mathematics. True, the Greeks had recourse to
the device. They had triangular numbers, square numbers and
polygonal numbers, which only means that these numbers can
be represented diagrammatically as triangles, squares and other
polygons and these figurate numbers are sums of particular
arithmetically progressive numbers. But their chief interest was
in the numbers themselves, not in the series. According to E. T.
Bell' the Chinese mathematician Yang-Hiu (126 A.D.) in his
The Analysis of Arithmetical rules in Nine Sections speaks about
the graphic representation of the summation of an A. P. But
details of the method are not given.

1E.T. Bell--Development cf Mathematics, p. 271.
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SHADOW PROBLEMS AND OTHER PROBLEMS

10.1. Shadow measurements and calculations based on them
formed an important part of astronomy and therefore of mathe-
matics from very early times. Even the Saryaprajiapti refers to
shadow lengths and their variations according to the time of the
day and the year (IV. 9). The highly condensed mathematical
section of the Aryabhatiya devotes more than three verses to
problems connected with the gnomon and its shadow :

WL TR ST §4d T |
aq e dve fasseard @gEer o

(A.B. Ganitapada, 14)
(The square of the measure of the gnomon is added to the
square of the shadow. The square root of the sum is the radius

of the svavrrta);

wE T T FAMET q gAfadegad |
TG AT BT W & : TAHANG 11
(A. B. Ganitapada, 15)

(The distance between the gnomon and the bhujgis multiplied
by the length of the gnomon and divided by the difference bet-
ween the gnomon and the bhuja. The result is the length of the
shadow of the gnomon from its foot.);

eramind sramfraeRT wfwar e )

WO FIEY §T SIATHFRIT o wAfa 11
(4. B. Ganpitapdda, 16)

(The distance between the tips of the shadows multiplied by
the length of the shadow and divided by the difference between
the two shadows is the kofi. This kofi multiplied by the length
of the gnomon and divided by the length of the shadow gives
the length of the bAuja.)
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In interpreting these verses! one has to remember that bhuja
and koti here are not the base and perpendicular side of the
right triangle, but the sine-chord and the cosine-chord and hence
the necessity for fixing the circle of reference which, as Nila-
kantha explains, is done in the first of these verses.

The source of light S is located
on a circle concentric with the
svavrtta, (own circle, i.e.
the circle of the gnomon and
its shadow), which has the tip
of the shadow, C as centre and
the line joining C to the top A
of the gnomon AB as radius.
Then SD, the vertical through
the source of light is the sine-
chord (bhja) and DC is the
cosine-chord (koti).

Fig. 1
DB . AB
And the shadow B C = —SD—AB—
(For, from the similar triangles S D C and A B C.
BC AB
DC™ SD
BC  AB
DC-—-BC =~ SD—AB
AB (DC—-BQC)
orBC=—55—2p
__AB.DB
= SD-AB

The third verse enables us to calculate the height of the source
of light and its horizontal distance from the observer with the

IW.E. Clark and Rodet (as one gathers from Clark’s references to his
interpretation) have not been able to interpret these verses satisfactorily.
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help of two shadow-throwing
gnomons. S is the source of
light, AB, and A B, are two
equal gnomons and BC and
B,C, their shadows.

S

D B B,C C
Fig. 2
distance between tips of shadows x shadow length
difference between shadow lengths
_ CC,.BC(orB, C)
- B,C,—BC
kati % length of gnomon
length of shadow

DC _SD_ SD _ DC,
BC AB A, B, 'BC
DC,—-DC  CC
B,C,_BC _B,C,—BC
CC,.BC

B,C,—B C

CC,.B, C,
B,C,—BC

AB.DC

—BC

A,B,.DC,
B, G,

10.2. Brahmagupta has rules for calculating the time of the day
from shadow-measurements, the length of the shadow from the
known heights of the gnomon and the light and the horizontal
distance between the two (Br. Sp. Si. XII., 53) and for finding
the height and distance of the light by measuring the shadow
lengths of the gnomon at two distances from the light (XII. 54).
The last is the same as that given by Aryabhata. The same
method is repeated in XIV. 15. How this method of the
gnomon and its shadow can be used to measure the height of
buildings is explained in the next verse.

3 Thenthe koti i.e. DC or DC,

and the ‘bhuja’ or S D =

For

orDC =
Similarly D C, -=
Also SD =

or
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10.3. In the chapter Sankucchayadijianadhyaya (chapter
dealing with the knowledge pertaining to the gnomon, shadow
etc.) there is an interesting section on determining the height and
distance of objects by observing their reflections in water.

g foeT dowgar gy At o |
FAIEr 1Y SRS TEe AT | _
(Br. Sp. Si., XIX. 17)

{The distance between the house and the man is divided by the
sum of the heights of the house and the man’s eyes and multiplied
by the height of the eyes. The tip of the image of the house will
be seen when the reflecting water is at a distance equal to the
above product).

i.e. if A Bis the house (the object),

4 C D the height ofthe man’s eyes and E
c the reflecting point, the man will be
A— able to see the tip of the image when
BD.CD
B 7 D BE-— AB + D™
i B (For, from the similar triangles ABE
! et and CDE
g ¢cb  DE_ DE
A" ABTCD = BE+DE = BD
or DE = _E_])_.__(.E..Q. . )
Fig. 3 AB + CD
Also from the same pair of similar triangles the height of the
house AB . 2L CD % 18).

- DE
By observing the reflection from two different distances also,
the height and distance of the object can be determined.

saafgfagsaatmgar Twmagh: |
AN =GIaed A ST an 0

(Br. Sp. Si. XIX. 19)
(The distance between the first and second positions of the
water divided by the difference between the distances of the man

from the water, when multiplied by the height of the eyes, is the
height, and the same, when multiplied by the distance between
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the water and the man, is the distance between the water and

the house.)
i.e. If A Bis the house,

A
' C, D, and C, D, the two
positions of the observer
¢ C2 and E,, E, the two points
of reflection.
B €, o E, Dy
Fig. 4
_ E,E,.C,D,
AP = E5,7ED,
E, E,.D, E,
and BE; = E, D,—E, D,
- AB B E,
For oD, = DE
_ _AB  BE,
B C2 D2 - D2 EZ
_ BE,—-BE, _ E, E,
" D.E,—DiE;  D,E;—D;E,
G, D,.EE,
AP = DBE-DF,
.E

10.4. A problem combining shadow and reflection is to find the
height at which the light from a source at given height reflected
from a water-surface between the source and a wall will strike
the wall. The problem is posed in

waTeTgRdfaNy AEgTIEiEaTe |
FTT mFqwar a1 FATERE T grE 1
(XIX. 8)

(He is well-versed in devices, who knows how to calculate the
ascent of the sun’s rays on a wall from the known ratio of the
shadow to the object and the distance between the water and

the wall)
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and the solution is contained in

gigEsfer Sags araiHaraarela: |

(XIX 20)
(The distance between the water and the wall divided by the

ratio of the shadow to the object is the height of ascent.)
. If S E is the incident ray strik-
2 ing the reflecting surface at E,
A G- E A the reflected ray striking
e ,k"] the wall at Aand C D a gno-
-~ mon in the path of the incident
D ray, its shadow will be DE and

Fig. 5 AB _CD
BE ED
CD
AB =BE. 5=

=]
Tl

|

w)
m

0
o

More than the possibility of Brahmagupta having investigated
the laws of reflection, the solutions of these problems testify to
a familiarity with the operations like alternando and invertendo,
connected with proportion and hence witha more or Jess.
thorough grasp of the theory of proportionality.

10.5. Sridhara has rules for calculating the time of the day from
the length of the shadow and vice versa. Mahavira gives the
time-honoured method of fixing the cardinal directions, ex-
plained in the Sulba siitras. The time of the day is calculated
with the help of the formula :?

1 1
2G6/gF1) T 2(otA + 1)
where s is the shadow length, g the length of the gnomon and
A the altitude of the sun. This is strictly applicable only when
A = 45°, When the equinoctial shadow is not zero the formula
has to be modified into?

Time elapsed =-

1G.5.5. IX. 83-
%G.5.S. 1X. 154,
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Time elapsed .= —Z—(S—ngj—_—e)— where e is equinoctial shadow,
and the shadow length at any time of the day is given by
s chj‘ - g+ e where d is the fraction of the day elapsed or

remaining.! With the ratio of the shadow to the gnomon length
known, the length of the shadow of a vertical gnomon inter-
cepted by a vertical wall in front can be calculated with the help
of similar triangles 2 With the help of this formula, when the
shadow height on a vertical screen is known, the height of the
object casting the shadow or the distance between the object and
the screen can be calculated.?

10.6. An unusual problem is the calculation of the inclination
(avanati) of an inclined object with the help of the length of the
shadow cast by it.
gaEitsten At @ frang s
dFaTsmrmEtafoar srEE: wear
e oAt W AXATEY |
AT geAT e sqrEmaAtala g

(G. S. 5. IX. 32-33)
(From the square of the shadow length should be subtracted the
squarc of the pillar length multiplied by the square of the ratio
of the shadow to the object. The difference multiplied by the
square of the ratio in:reased by one is again subtracted from the
square of the shadow (of the pillar). The square root of this
difference subtracted from the shadow length and divided by the
square of the shadow-object ratio as combined with one, gives
the inclination of the pillar.)

RN Here by avanati (inclination) is
B meant the projection of the slanting
- AN object on the horizontal, AB is
RN /.' N the slanting pillar casting the
~ ~ .
o i ~ shadow AC on the horizontal
A ; € - .
plane. B F is perpendicular on
AC.
9 '8
'Ibid 1X. 18.
2Ibid 1X. 21.

31bid IX. 23 and 26.
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Then AF . _AC~AVAC—(AC*—s2 . AB?) (s*+1)
s2 4+ |
where s is the shadow-object ratio.
For CF, which is the shadow of the vertical BF
- BF.s - sqA/ABT—AF?
Also CF¢  (AC- AF)?
— (BF .5)? -= s (AB2—AF?)
j.e. AC?2 + AF2—2 AC . AF = s?2. AB2—s?, AF?
or A F2(s2 + 1)-2 AC . AF :s? x AB?—AC:
2AC.AF 52 AB*-AC?
s 4 1 - s -4 1
AC \? sz,  AB2—_AC? AC? |
5241 st - 1 + s + DY
AC _ A/ACET (s AB*—ACYH (s 4 1)
s? 41 s 4 1
A C--+/ACE + (2. ABP—ACH (s* + D)
s + 1
The section concludes with the simple calculation of the
length of the shadow, the height of the source of light, and its
distance from the gnomon when the other two are known.1’
Aryabhata II's treatment of shadow problems is confined
to the calculation of the time of the day from the shadow and
vice versa.

or A F2.

ie. (A F—

.A.F -

10.7. The shadow problems in the Lilavati are purely geometrical
and evidently modelled on the elder Aryabhata’s treatment.
The solution of the first problem in the section is worthy of
notice.
The rule is
BTAYY : FONAICGAC T FAISTAHTHFT: TG |
TR ; qTeR g FMIGL MRANAGHRS X 6@ AW 0

(Lil. 232)
(576 is to be divided by the difference between the squares of the
difference of the shadow Jengths and that of the hypotenuses.
The difference between the hypotenuses multiplied by the square

bid, IX 403-45.
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root of the above quotient, combined with one, is to be com-
bined with and diminished by the difference between the shadow-
lengths, The results when halved give the shadow-lengths
separately.)

The figure attached’ to this problem does not represent the
shadows cast by two equal gnomons at two different distances
from the source of light but a triangle formed by the juxtaposition

of two jaryas (right triangles) (ABC
A and ABD in the figure), i.e., as if
two sources of light at different
heights or distances or both on either
side of the gnomon were producing

C B D shadows BD and BC on either side
] of the gnomon. Then these are the
Fig. 7 Gbadhas of the triangle ACD. Let

the difference between the shadow-lengths, BD — BC := a and
difference between the hypotenuses, AD- AC — b be given.

Let BD4+BC - x

Then BD - 21 & 4ng o . 22
AD?--ACz _ BD2—BCz - ax
AD + AC — f%
ax/b +b  ax 4.b?
- AD - 2 2b
a X--b?
and AC —55
But AD? - ABz .+ BD?
Crax 4 byt s K 4 a\2
() AR+ (5

a? x* + 2abzx - b! — b% (4 AB? { x2 + 2ax 4 a?)
X% (a®Cb?) . b2(4 AB? 4- a? -b?)

Xz-bz.-—-—_—m—+1

4 AB:
X ot BD+BC:b\/m2‘+1
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4 A B
Zopr T Ee

Hence BD or BC =b 5

And this is the expression embodied in the verse. Since AB = 12
angulas, 4 AB: appears as 576.

All the other problems are solved with the help of similar
triangles.

Narayana has nothing new except that he varies the problem
of the shadows cast by the gnomon at different distances by
calculating the lengths of the shadow cast by the gnomon at the
same place when it intercepts the light from two sources at
different heights on the same vertical.!

1G.K. p. 211,
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amsa — an upper vertex of a quadrilateral.
(S1. Su.)

aksnayarajju — the diagonal chord of rectangle or
a square (S/. Su.).

abadha, avabadha, — segments of the base of a triangle

avadha, abadha or badha produced by the altitude on it; the
projection of any slanting side on
the horizontal.

ayata or ayatacatur- — rectangle. Syn. — Aayatacaturasra,
bhuja dirghacaturasra or dirgha (S/. Su.).

ayatavrtta — Ellipse (G.S.S. VIL. 5).

ayama — Breadth (A. B. Ganitapada) Nila-

kantha’s commentary on A.B. §;
length as opposed to breadth,
(Jambudvipasamasa pp. 5,7 and
other Jain works and later works).

utsedha — height.  Syn.—ucchraya, ucchriti,
auccya.

udici — north-south line.

ubhayatahprauga -— double isosceles triangle; rhombus
(SL. Su.).

rjubhuja — rectilinear figure (Lil. 163).

karani — the side of a rectilinear figure; the

side of a square or rectangle (S/.
Su.); maker or producer of the
required area.

karpa — diagonal; hypotenuse.
meaning in the Katyayana Sulba
Satra (lv, 9 and 10) is obscure.
Syn.—$ruti, Sravapa $ravas (G.K.;
Ks. Vya. 26, 27 etc.), $rqofra (G.K.;
Ks. Vya. Ud. 93)

koti — the perpendicular side of a right-
angled triangle.
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kotijya

kona
ksetra
ksetraganita

ksetraphala
khataphala
ganita

grasa

gola
ghanaphala
ghataksetra

cakravalavrtta
caturasra
catuskona
capa

capaksetra

chaya
‘anya

jatya
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— the cosine-chord of an arc, i.e. the
half-chord of its complementary
arc.

— angle, corner.

— closed figure.

- geometry.
Syn.—Bhiganita (G.K., Ks. Vya. Ud.
90). Bhiimiganita (G.K.K. Vya. 132).

— area.

the volume of a pit or excavation

— area, mathematics, astronomical
calculations,

— the common portion of two inter-
secting circles; the largest witdh
thereof.

— sphere.

— volume.

— the diagrammatic representation of
a multiplication product.

— annulus (G.S.S. VIL 6.).

— quadrilateral square (S/. Su.).

— quadrilateral (S.P.I. 8 K.K.).

—- arc.

Syn. -Dhanus, Karmuka, Kodanda.

—- segment.

— shadow. Syn. —Bha, Prabha.

— rational right triangle or rectangle
from which other rational figures are
to be obtained, a figure with rational
sides (G.S.S. VIL. 90} and onward).

— a rational right angled triangle,
any rectilinear figure with rational
sides.

— chord, Syn.--Jiva, Maurvi, Sifjini

(G.K., Ks. Vya. 12),Guna (G.K,,
Ks. Vya. Ud. 57).
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tiryanmani — the transverse side of a quadri-
lateral; the horizontal side. The
transverse measurer (S/. Su.).

trikarpa — (K. Sl 1V, 9) meaning not clear.

trijya — radius; the sine-chord of 3 rasis or
of one-fourth the circumference.

tribhuja — triangle Syn.—Tribahu, trikona (G.K.

Ks., Vya. 13,27 etc.), tryasra.

trisama — equilateral triangle, trapezium with
three sides equal.

tryasra — triangle, more especially a right
triangle.

dvisamabhuja or — isosceles.

dvisama

dhanuhkastha — arc; bow-stick (literally) (G.S.S.
VIIL. 73}).

nara — gnomon. Syn.—nr.

nirgama — annulus  (G.K., Ks. Vya. 1}
G.S.S. VII 28).

nemi — a part of an annulus (G.K. Ks.
Vya, 14; G.S.S. VII. 7).

parakarpa — the third diameter of a cyclic qua-

drilateral oBtainable by interchanging
a pair of adjacent sides. (G.K., Ks.
Pya. 48, 96).

paridhi — circumference. Syn. ——parinéha,
vrtl.

parimandala — ellipse (?) (8.P.) 1.8; Circle.

pita — the circumcentre-cum-incentre-cum-

orthocentre  of an  equilateral
triangle (Nilakantha’s comments on
A.B., Ganitapada 6).

patarekha -— the perpendiculars on the base and
top of a trapezium from the point
of intersection of its diagonals.
(A.B., Ganitapada. 8).

parévamani — the lateral side of a quadrilateral;
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prsthaphala
prsthya

prauga
bhuja
bhujajya
bha

mandala
madhyamalamba

mukha

rajju

runda

famba or avalamba

valayakaraksetra
varga

vimdaphala
vi§esa

viskambha
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the flank-side; the flank-measurer
(SI. Su.).

—- surface area.

— line of symmetry (S Su.) usually
east-west line.

— triangle, an isosceles triangle (S/.
Su.); the forepart of the shaft of a
chariot, which is triangular in shape.

— sides. Syn. —bahu, dos

-— sine-chord of an arc, i.e. half-chord
of twice the arc,

-— base Syn.—mahi, ku, vasudha,
urvi, tala bhumi, dhara.

— circle (SI. Su.).

— mean altitude (G.K.Ks. Vya. 63
and Ud. 54).

— face, the top side of a figure with
more than three sides, especially the
top or the shorter parallel side of a
trapezium.

Syn.—Vadana; Vaktra (G.X., Ks.
Vya. Ud. 18)

-— perimeter (G.K., Ks. Vya. Ud. 84,85
and 86; G.S.S. VII. 38).

— breadth (of an annular ring)
(Trilokasara 111. 315)

—- perpendicular; altitude; vertical.

— figure shaped like a ring, annulus.

— a small square of unit side got by
dividing the sides into units and
drawing parallels through the points
of division (4p. SI. Su. IIl. 7 and
other SI. Su.).

— volume (7. P. 1. 181).

— the difference between the diagonal
and side of a square, especially
when expressed in terms of the side
(Sl. Su.).

— diameter, especially in S/. Su. A.B.
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and Jaina works; breadth as opposed
to length (Jambudvipasamasap. 5.7
and other early Jaina works).

visamacakravala — ellipse (?) (S. P. L. 8).

visama or Visama- -— a quadrilateral with unequal sides;
caturbhuja a cyclic quadrilateral (in the Br. Sp.

Si. etc.) Syn. -- visamacaturasra,
visamabhuja.

visamatribhuja — scalene Triangle.

vistara — length (Nilakantha’s commentary
on Aryabhatiya under v. 8); breadth.

vistrti — diameter (Y. B. p. 208).

vrti -~ perimeter (G. K. Ks. Vya. 112).

vrtta - circle Syn. — Valaya, Manpdala (S/.
su) (T. P., Trilokasara).

vedha -— depth.

vyasa — diameter; breadth  (Jambudvipa-
samdsa p. 20; Trilokasara, 310).

vyasardha — radius Syn. — Viskambhardha.

sankhavrtta — a figure roughly resembling the
longitudinal section of a conch
shell (G.K. Ks. Vya. 2, 11, 12.).

sanku - ghomoi.

$ara — arrow, the height of an arc or
segment of a circle. Syn. — lsu;
bana: sayaka (G. K. Ks. 66).

$rngataka — triangle (Monier Williams); some
sort of a four sided figure (Ma. Si.
X1V. 74, 79) tetrahedron [G. S. S.
VIIL 303 (M.

$redhiksetra - diagrammatical representation of a
mathematical series.

$roni — a lower vertex of a quadrilateral or
triangle (S/. Su.).

sadasri — tetrahedron (4. B. Ganitapada. 6)

samakosthamiti — area, the measure of equal unit

samacaturbhuja

squares in a figure (L1l. 167).
— square or rhombus; a quadrilateral
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with all four sides equal. Syn.—

Tulyacaturbhuja.

samabahu — equilateral  figure (G. K. Ks.
Vya. 1).

samanalamba -— a quadrilateral with the altitudes
equal; trapezium. Syn.——Samalamba.

samacakravala — circle (S. P. I. 8).

samadalakoti — altitude (?) (A4.B. Ganitapada 6).

samaparinaha — the circumference of a circle (A4.B.
Ganitapada. 7).

sampdita — point of intersection (4. B. Ganita-

pada 18 and Nilakaptha’s com-
mentary on it).

sandhi — the interspace between the foot of
an altitude and the foot of the flank
side from whose tip the altitude is
drawn, usually in a quadrilateral.
(Lil. 193).

siici — the inner, outer or middle, dia-
meter of an annular ring (Triloka-
sara, 111, 309, 310).

siici or siiciksetra — the triangle got by producing the
flanks of a quadrilateral till they
meet; the pyramid or cone got by
producing the lateral faces of the
frustum of a pyramid or cone.

hrdaya or hrt or — circum-radius (Br. Sp. Si. XII 27,

hrdayarajju G. K. Ks. Vya. Ud. 48).
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